A particle swarm optimization and prior knowledge fusion seismic damage prediction of concrete structures

粒子群优化 元优化 计算机科学 多群优化 蚁群优化算法 元启发式 数学优化 流离失所(心理学) 帝国主义竞争算法 算法 数学 心理学 心理治疗师
作者
Bin Sun,Yan Li,Tong Guo
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:157: 111552-111552 被引量:6
标识
DOI:10.1016/j.asoc.2024.111552
摘要

A data-driven algorithm is developed to predict local seismic damage distribution of concrete structures based on the measured global structural response. Based on the algorithm, the signal of reaction force and displacement at one location is only necessary for seismic damage prediction. The algorithm is established based on the improved particle swarm optimization with two innovative strategies. One is the probabilistic mutation procedure, which can consider the prior knowledge of the positive correlation between the strain/stress level and damage level in the seismic damage optimization process. Another is the dynamic condition-based mutation and cross procedure, which can increase the diversity of the particle swarm in the optimization process to get rid of the possible local optimum. A representative example of a concrete column under cyclic load is designed and modeled to examine the performance of the algorithm. The prediction results based on the algorithm are compared with the traditional particle swarm optimization and the previous damage inversion algorithm based on ant colony optimization. The comparison results support that the local seismic damage distribution prediction based on the algorithm is closer to the corresponding experimental result. In addition, the error of the predicted macroscopic response in the final seismic stage based on the algorithm is 1.7%. The prediction error of the traditional particle swarm optimization algorithm is 12.6%, and the prediction error of the previous damage inversion algorithm based on ant colony optimization is 8.5%. The ability of the proposed algorithm is supported, which can be capable of seismic damage prediction of concrete structures subjected to earthquakes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助meimei采纳,获得10
刚刚
alex发布了新的文献求助30
3秒前
hhh发布了新的文献求助10
3秒前
3秒前
邹友亮完成签到,获得积分10
3秒前
笑笑发布了新的文献求助10
3秒前
3秒前
研友_nEj9DZ完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
7秒前
nbzhan发布了新的文献求助10
8秒前
8秒前
烧仙草发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
蒋时晏应助simon0208采纳,获得200
9秒前
罗向南发布了新的文献求助10
9秒前
10秒前
四眼骷髅发布了新的文献求助10
11秒前
张才豪完成签到,获得积分10
11秒前
hhh关闭了hhh文献求助
12秒前
12秒前
韶安萱发布了新的文献求助10
13秒前
Z赵发布了新的文献求助10
14秒前
李伟发布了新的文献求助10
14秒前
15秒前
炙热冰蓝发布了新的文献求助20
15秒前
程风破浪发布了新的文献求助10
17秒前
汉堡包应助烧仙草采纳,获得10
18秒前
白攸远完成签到,获得积分10
18秒前
754完成签到,获得积分10
18秒前
肖肖完成签到 ,获得积分10
18秒前
小二郎应助bbb采纳,获得10
19秒前
19秒前
19秒前
四眼骷髅完成签到,获得积分20
20秒前
SweetNanchu完成签到 ,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3565922
求助须知:如何正确求助?哪些是违规求助? 3138683
关于积分的说明 9428454
捐赠科研通 2839408
什么是DOI,文献DOI怎么找? 1560695
邀请新用户注册赠送积分活动 729854
科研通“疑难数据库(出版商)”最低求助积分说明 717669