DFEE-Net: Dual-Stream Feature Exchange Enhanced Network for Image Forgery Localization

对偶(语法数字) 计算机科学 网(多面体) 特征(语言学) 图像(数学) 人工智能 计算机视觉 特征提取 模式识别(心理学) 数学 艺术 语言学 哲学 几何学 文学类
作者
Aokun Zheng,Chao Xu,Tianqiang Huang,Feng Ye,Haifeng Luo,Liqing Huang
标识
DOI:10.1109/iske60036.2023.10481257
摘要

Image forgery localization is utilized to identify areas of a digital image that have been manipulated while ensuring the image's authenticity. Currently, deep learning-based techniques have been extensively employed in image forgery detection and localization with notable achievements. However, contemporary deep learning techniques utilize image content and high-frequency data as inputs. High-level features (for instance, brightness inconsistency) and low-level features (such as camera fingerprints) are separately extracted, then combined at the end of the network. This leads to a lack of exchange of information and guidance between the two feature types during the extraction process, inhibiting the network's ability to improve recognition accuracy in a complementary manner. Therefore, in this paper, we propose Dual-stream Feature Exchange Enhanced Network (DFEE-Net), in which low-level features guide the extraction of high-level features in the encoding stage, while in the decoding stage, the two streams guide each other to extract useful features through information exchange. Experimental results support that the interaction of information enhances the network's ability to recognize tampered regions with improved accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七七完成签到,获得积分10
刚刚
Lucas应助南山无梅落采纳,获得10
1秒前
juzipi完成签到,获得积分10
1秒前
ziming313发布了新的文献求助10
1秒前
xu小白完成签到,获得积分10
1秒前
1秒前
yookia应助htt采纳,获得10
2秒前
2秒前
3秒前
是小王ya发布了新的文献求助20
3秒前
小张医生完成签到,获得积分10
4秒前
4秒前
传奇3应助甜蜜阑悦采纳,获得10
4秒前
54189415完成签到,获得积分20
5秒前
阿桓完成签到,获得积分10
5秒前
6秒前
6秒前
英俊的铭应助ziming313采纳,获得10
7秒前
54189415发布了新的文献求助10
7秒前
sigla发布了新的文献求助10
7秒前
8秒前
曼冬完成签到,获得积分10
8秒前
8秒前
shen完成签到,获得积分10
8秒前
xu发布了新的文献求助10
9秒前
吴宵完成签到,获得积分10
9秒前
9秒前
吐司大王发布了新的文献求助10
9秒前
莹莹CY发布了新的文献求助30
11秒前
11秒前
852应助54189415采纳,获得10
12秒前
爬山虎发布了新的文献求助10
12秒前
灌汤包完成签到,获得积分10
13秒前
13秒前
14秒前
xixi789完成签到,获得积分10
15秒前
5552222发布了新的文献求助10
15秒前
wyq完成签到 ,获得积分10
15秒前
帅气男孩应助阔达苡采纳,获得10
15秒前
Hello应助清漪采纳,获得10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954873
求助须知:如何正确求助?哪些是违规求助? 3500946
关于积分的说明 11101499
捐赠科研通 3231364
什么是DOI,文献DOI怎么找? 1786402
邀请新用户注册赠送积分活动 870037
科研通“疑难数据库(出版商)”最低求助积分说明 801771