Development and Study of a Knowledge Graph for Retrieving the Relationship Between BVDV and Related Genes

计算机科学 知识库 人工智能 深度学习 图形 知识抽取 基因 机器学习 生物 理论计算机科学 遗传学
作者
Yunli Bai,Wang-Huai Zhou,Jia Lv,Chang Lu,Yingfei Li,Rulin Wang
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:18 (5): 448-457
标识
DOI:10.2174/1574893618666230224142324
摘要

Background: Bovine viral diarrhea virus (BVDV) can cause diarrhea, abortion, and immunosuppression in cattle, imposing huge economic losses for the global cattle industry. The pathogenic and immune mechanisms of BVDV remain elusive. The development of a BVDV-gene knowledge base can provide clues to reveal the interaction of BVDV with host cells. However, the traditional method of manually establishing a knowledge base is time-consuming and inefficient. The method of developing a knowledge base based on deep learning has noticeably attracted scholars' attention recently. Objective: The study aimed to explore the substitution of deep learning for manual mining of BVDVrelated genes and to develop a knowledge graph of the relationship between BVDV and related genes. Methods: A deep learning-based biomedical knowledge graph development method was proposed, which used deep learning to mine biomedical knowledge, model BVDV and various gene concepts, and store data in a graphical database. First, the PubMed database was used as the data source and crawler technology to obtain abstract data on the relationship between BVDV and various host genes. Pretrained BioBERT model was used for biomedical named entity recognition to obtain all types of gene entities, and the pre-trained BERT model was utilized for relationship extraction to achieve the relationship between BVDV and various gene entities. Then, it was combined with manual proofreading to obtain structured triple data with high accuracy. Finally, the Neo4j graph database was used to store data and to develop the knowledge graph of the relationship between BVDV and related genes. Results: The results showed the obtainment of 71 gene entity types, including PRL4, MMP-7, TGIF1, etc. 9 relation types of BVDV and gene entities were obtained, including "can downregulate expression of", "can upregulate expression of", "can suppress expression of", etc. The knowledge graph was developed using deep learning to mine biomedical knowledge combined with manual proofreading, which was faster and more efficient than the traditional method of establishing knowledge base manually, and the retrieval of semantic information by storing data in graph database was also more efficient. Conclusion: A BVDV-gene knowledge graph was preliminarily developed, which provided a basis for studying the interaction between BVDV and host cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
calico发布了新的文献求助10
刚刚
刚刚
甜甜的采蓝完成签到,获得积分10
1秒前
祁i完成签到 ,获得积分10
1秒前
xiao完成签到 ,获得积分10
2秒前
海豚的盆友完成签到,获得积分10
2秒前
bkagyin应助133采纳,获得10
2秒前
此晴可待发布了新的文献求助10
2秒前
稳重完成签到 ,获得积分10
2秒前
科研饼发布了新的文献求助10
2秒前
Samming完成签到,获得积分10
2秒前
陈晨完成签到,获得积分10
3秒前
领导范儿应助Mine采纳,获得10
3秒前
3秒前
Stride完成签到 ,获得积分10
4秒前
十一发布了新的文献求助10
5秒前
5秒前
反向大笨钟完成签到,获得积分10
5秒前
5秒前
莲意峨眉峰完成签到,获得积分10
5秒前
CC完成签到 ,获得积分10
5秒前
传奇3应助叶叶叶叶采纳,获得10
5秒前
6秒前
英姑应助dsv采纳,获得10
6秒前
千寒完成签到,获得积分10
6秒前
斯文败类应助zss采纳,获得10
6秒前
6秒前
6秒前
7秒前
7秒前
Future发布了新的文献求助10
7秒前
谁家那小谁完成签到,获得积分10
8秒前
研友_VZG7GZ应助专注易绿采纳,获得10
8秒前
woyaojiayou完成签到,获得积分10
8秒前
闹心发布了新的文献求助10
8秒前
8秒前
活泼的鼠标完成签到 ,获得积分10
9秒前
fang完成签到,获得积分20
9秒前
9秒前
高分求助中
Comprehensive Toxicology Fourth Edition 2026 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5107908
求助须知:如何正确求助?哪些是违规求助? 4317082
关于积分的说明 13449534
捐赠科研通 4146329
什么是DOI,文献DOI怎么找? 2272097
邀请新用户注册赠送积分活动 1274455
关于科研通互助平台的介绍 1212408