Development and Study of a Knowledge Graph for Retrieving the Relationship Between BVDV and Related Genes

计算机科学 知识库 人工智能 深度学习 图形 知识抽取 基因 机器学习 生物 理论计算机科学 遗传学
作者
Yunli Bai,Wang-Huai Zhou,Jia Lv,Chang Lu,Yingfei Li,Rulin Wang
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:18 (5): 448-457
标识
DOI:10.2174/1574893618666230224142324
摘要

Background: Bovine viral diarrhea virus (BVDV) can cause diarrhea, abortion, and immunosuppression in cattle, imposing huge economic losses for the global cattle industry. The pathogenic and immune mechanisms of BVDV remain elusive. The development of a BVDV-gene knowledge base can provide clues to reveal the interaction of BVDV with host cells. However, the traditional method of manually establishing a knowledge base is time-consuming and inefficient. The method of developing a knowledge base based on deep learning has noticeably attracted scholars' attention recently. Objective: The study aimed to explore the substitution of deep learning for manual mining of BVDVrelated genes and to develop a knowledge graph of the relationship between BVDV and related genes. Methods: A deep learning-based biomedical knowledge graph development method was proposed, which used deep learning to mine biomedical knowledge, model BVDV and various gene concepts, and store data in a graphical database. First, the PubMed database was used as the data source and crawler technology to obtain abstract data on the relationship between BVDV and various host genes. Pretrained BioBERT model was used for biomedical named entity recognition to obtain all types of gene entities, and the pre-trained BERT model was utilized for relationship extraction to achieve the relationship between BVDV and various gene entities. Then, it was combined with manual proofreading to obtain structured triple data with high accuracy. Finally, the Neo4j graph database was used to store data and to develop the knowledge graph of the relationship between BVDV and related genes. Results: The results showed the obtainment of 71 gene entity types, including PRL4, MMP-7, TGIF1, etc. 9 relation types of BVDV and gene entities were obtained, including "can downregulate expression of", "can upregulate expression of", "can suppress expression of", etc. The knowledge graph was developed using deep learning to mine biomedical knowledge combined with manual proofreading, which was faster and more efficient than the traditional method of establishing knowledge base manually, and the retrieval of semantic information by storing data in graph database was also more efficient. Conclusion: A BVDV-gene knowledge graph was preliminarily developed, which provided a basis for studying the interaction between BVDV and host cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助ylf采纳,获得30
刚刚
脑洞疼应助从容的天空采纳,获得10
1秒前
1秒前
从来都不会放弃zr完成签到,获得积分10
1秒前
2秒前
azk完成签到,获得积分10
3秒前
8秒前
penguin发布了新的文献求助10
8秒前
英俊的铭应助了又柳采纳,获得10
9秒前
俭朴新之完成签到 ,获得积分10
9秒前
10秒前
13秒前
谢之遥发布了新的文献求助10
13秒前
14秒前
15秒前
16秒前
wanci应助xbh采纳,获得10
16秒前
陈陈完成签到 ,获得积分10
18秒前
19秒前
星宇完成签到 ,获得积分10
20秒前
忧虑的钻石应助酶没美镁采纳,获得10
20秒前
20秒前
神华发布了新的文献求助10
21秒前
852应助偏爱走夜路采纳,获得10
23秒前
小羊发布了新的文献求助10
24秒前
liu完成签到,获得积分20
25秒前
26秒前
29秒前
靓仔完成签到,获得积分10
31秒前
JACK完成签到,获得积分10
32秒前
九珥完成签到,获得积分10
32秒前
priss111应助suan采纳,获得30
32秒前
正直无极完成签到 ,获得积分10
32秒前
34秒前
一颗煤炭完成签到 ,获得积分10
40秒前
40秒前
sparks完成签到 ,获得积分10
42秒前
46秒前
48秒前
49秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165336
求助须知:如何正确求助?哪些是违规求助? 2816368
关于积分的说明 7912456
捐赠科研通 2475983
什么是DOI,文献DOI怎么找? 1318487
科研通“疑难数据库(出版商)”最低求助积分说明 632171
版权声明 602388