清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development and Study of a Knowledge Graph for Retrieving the Relationship Between BVDV and Related Genes

计算机科学 知识库 人工智能 深度学习 图形 知识抽取 基因 机器学习 生物 理论计算机科学 遗传学
作者
Yunli Bai,Wang-Huai Zhou,Jia Lv,Chang Lu,Yingfei Li,Rulin Wang
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:18 (5): 448-457
标识
DOI:10.2174/1574893618666230224142324
摘要

Background: Bovine viral diarrhea virus (BVDV) can cause diarrhea, abortion, and immunosuppression in cattle, imposing huge economic losses for the global cattle industry. The pathogenic and immune mechanisms of BVDV remain elusive. The development of a BVDV-gene knowledge base can provide clues to reveal the interaction of BVDV with host cells. However, the traditional method of manually establishing a knowledge base is time-consuming and inefficient. The method of developing a knowledge base based on deep learning has noticeably attracted scholars' attention recently. Objective: The study aimed to explore the substitution of deep learning for manual mining of BVDVrelated genes and to develop a knowledge graph of the relationship between BVDV and related genes. Methods: A deep learning-based biomedical knowledge graph development method was proposed, which used deep learning to mine biomedical knowledge, model BVDV and various gene concepts, and store data in a graphical database. First, the PubMed database was used as the data source and crawler technology to obtain abstract data on the relationship between BVDV and various host genes. Pretrained BioBERT model was used for biomedical named entity recognition to obtain all types of gene entities, and the pre-trained BERT model was utilized for relationship extraction to achieve the relationship between BVDV and various gene entities. Then, it was combined with manual proofreading to obtain structured triple data with high accuracy. Finally, the Neo4j graph database was used to store data and to develop the knowledge graph of the relationship between BVDV and related genes. Results: The results showed the obtainment of 71 gene entity types, including PRL4, MMP-7, TGIF1, etc. 9 relation types of BVDV and gene entities were obtained, including "can downregulate expression of", "can upregulate expression of", "can suppress expression of", etc. The knowledge graph was developed using deep learning to mine biomedical knowledge combined with manual proofreading, which was faster and more efficient than the traditional method of establishing knowledge base manually, and the retrieval of semantic information by storing data in graph database was also more efficient. Conclusion: A BVDV-gene knowledge graph was preliminarily developed, which provided a basis for studying the interaction between BVDV and host cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆呆的猕猴桃完成签到 ,获得积分10
2秒前
3秒前
LeoBigman完成签到 ,获得积分10
17秒前
27秒前
31秒前
幻影发布了新的文献求助10
34秒前
宫碧空完成签到,获得积分20
47秒前
宫碧空发布了新的文献求助10
54秒前
111完成签到 ,获得积分10
1分钟前
满意的伊完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
幻影发布了新的文献求助10
1分钟前
wanci应助XXX987采纳,获得10
2分钟前
丁老三完成签到 ,获得积分10
2分钟前
赵子龙完成签到,获得积分10
2分钟前
可可发布了新的文献求助10
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
2分钟前
fufufu123完成签到 ,获得积分10
2分钟前
番茄酱完成签到 ,获得积分10
2分钟前
心灵美的不斜完成签到 ,获得积分10
2分钟前
JoeyJin发布了新的文献求助10
3分钟前
大大大忽悠完成签到 ,获得积分10
3分钟前
3分钟前
arniu2008完成签到,获得积分10
3分钟前
3分钟前
XXX987发布了新的文献求助10
3分钟前
JoeyJin发布了新的文献求助10
3分钟前
XXX987完成签到,获得积分10
3分钟前
席江海完成签到,获得积分0
3分钟前
千里草完成签到,获得积分10
4分钟前
浮游应助JoeyJin采纳,获得10
4分钟前
chenlc971125完成签到 ,获得积分10
4分钟前
LPPQBB应助科研通管家采纳,获得100
4分钟前
4分钟前
4分钟前
心静止水发布了新的文献求助10
4分钟前
面汤完成签到 ,获得积分10
4分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347014
求助须知:如何正确求助?哪些是违规求助? 4481401
关于积分的说明 13947659
捐赠科研通 4379419
什么是DOI,文献DOI怎么找? 2406411
邀请新用户注册赠送积分活动 1398995
关于科研通互助平台的介绍 1371888