亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Drug Target Interaction Prediction Using Machine Learning Techniques – A Review

计算机科学 机器学习 人工智能 药品 数据科学 药理学 医学
作者
A. Suruliandi,T. Idhaya,S. P. Raja
出处
期刊:International Journal of Interactive Multimedia and Artificial Intelligence [Universidad Internacional de La Rioja]
卷期号:8 (6): 86-86 被引量:10
标识
DOI:10.9781/ijimai.2022.11.002
摘要

Drug discovery is a key process, given the rising and ubiquitous demand for medication to stay in good shape right through the course of one's life.Drugs are small molecules that inhibit or activate the function of a protein, offering patients a host of therapeutic benefits.Drug design is the inventive process of finding new medication, based on targets or proteins.Identifying new drugs is a process that involves time and money.This is where computer-aided drug design helps cut time and costs.Drug design needs drug targets that are a protein and a drug compound, with which the interaction between a drug and a target is established.Interaction, in this context, refers to the process of discovering protein binding sites, which are protein pockets that bind with drugs.Pockets are regions on a protein macromolecule that bind to drug molecules.Researchers have been at work trying to determine new Drug Target Interactions (DTI) that predict whether or not a given drug molecule will bind to a target.Machine learning (ML) techniques help establish the interaction between drugs and their targets, using computer-aided drug design.This paper aims to explore ML techniques better for DTI prediction and boost future research.Qualitative and quantitative analyses of ML techniques show that several have been applied to predict DTIs, employing a range of classifiers.Though DTI prediction improves with negative drug target pairs (DTP), the lack of true negative DTPs has led to the use a particular dataset of drugs and targets.Using dynamic DTPs improves DTI prediction.Little attention has so far been paid to developing a new classifier for DTI classification, and there is, unquestionably, a need for better ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
linyingo发布了新的文献求助10
2秒前
4秒前
李子潭发布了新的文献求助10
5秒前
linyingo完成签到,获得积分10
8秒前
大个应助菜鸟写论文采纳,获得10
19秒前
20秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
热情依白应助科研通管家采纳,获得10
28秒前
MROU完成签到,获得积分10
29秒前
Jj发布了新的文献求助10
34秒前
physicalproblem完成签到,获得积分10
1分钟前
1分钟前
1分钟前
张杰列夫完成签到 ,获得积分10
1分钟前
科研通AI2S应助hahaha123采纳,获得10
1分钟前
传奇3应助hahaha123采纳,获得10
1分钟前
Ava应助hahaha123采纳,获得30
1分钟前
1分钟前
传奇3应助hahaha123采纳,获得10
1分钟前
万能图书馆应助hahaha123采纳,获得10
1分钟前
Rahul完成签到,获得积分10
1分钟前
hahaha123完成签到,获得积分10
1分钟前
1分钟前
1分钟前
NPC驳回了李健应助
2分钟前
归尘应助科研通管家采纳,获得30
2分钟前
2分钟前
吃饱饱关注了科研通微信公众号
2分钟前
3分钟前
木子给木子的求助进行了留言
3分钟前
3分钟前
NPC发布了新的文献求助50
3分钟前
学术小白完成签到,获得积分10
4分钟前
jasonjiang完成签到 ,获得积分10
4分钟前
4分钟前
勤恳水风发布了新的文献求助10
5分钟前
5分钟前
zzyh307完成签到 ,获得积分0
5分钟前
今后应助砂砾采纳,获得10
5分钟前
小耳朵完成签到,获得积分10
5分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307378
求助须知:如何正确求助?哪些是违规求助? 2941022
关于积分的说明 8500196
捐赠科研通 2615407
什么是DOI,文献DOI怎么找? 1428836
科研通“疑难数据库(出版商)”最低求助积分说明 663595
邀请新用户注册赠送积分活动 648443