Drug Target Interaction Prediction Using Machine Learning Techniques – A Review

计算机科学 机器学习 人工智能 药品 数据科学 药理学 医学
作者
A. Suruliandi,T. Idhaya,S. P. Raja
出处
期刊:International Journal of Interactive Multimedia and Artificial Intelligence [International University of La Rioja]
卷期号:8 (6): 86-86 被引量:12
标识
DOI:10.9781/ijimai.2022.11.002
摘要

Drug discovery is a key process, given the rising and ubiquitous demand for medication to stay in good shape right through the course of one's life.Drugs are small molecules that inhibit or activate the function of a protein, offering patients a host of therapeutic benefits.Drug design is the inventive process of finding new medication, based on targets or proteins.Identifying new drugs is a process that involves time and money.This is where computer-aided drug design helps cut time and costs.Drug design needs drug targets that are a protein and a drug compound, with which the interaction between a drug and a target is established.Interaction, in this context, refers to the process of discovering protein binding sites, which are protein pockets that bind with drugs.Pockets are regions on a protein macromolecule that bind to drug molecules.Researchers have been at work trying to determine new Drug Target Interactions (DTI) that predict whether or not a given drug molecule will bind to a target.Machine learning (ML) techniques help establish the interaction between drugs and their targets, using computer-aided drug design.This paper aims to explore ML techniques better for DTI prediction and boost future research.Qualitative and quantitative analyses of ML techniques show that several have been applied to predict DTIs, employing a range of classifiers.Though DTI prediction improves with negative drug target pairs (DTP), the lack of true negative DTPs has led to the use a particular dataset of drugs and targets.Using dynamic DTPs improves DTI prediction.Little attention has so far been paid to developing a new classifier for DTI classification, and there is, unquestionably, a need for better ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JCyang发布了新的文献求助10
刚刚
Q清风慕竹完成签到,获得积分10
2秒前
3秒前
4秒前
5秒前
情怀应助淡定的如风采纳,获得10
7秒前
李解万岁发布了新的文献求助10
7秒前
现代书雪完成签到,获得积分20
7秒前
bajie01完成签到,获得积分10
8秒前
酱酱酿酿发布了新的文献求助10
9秒前
David完成签到 ,获得积分10
11秒前
斯文败类应助闪闪的屁股采纳,获得10
12秒前
21秒前
共享精神应助深霖阳光采纳,获得30
21秒前
酷波er应助心安即归处采纳,获得10
22秒前
23秒前
虚幻的雪巧完成签到,获得积分10
24秒前
天天快乐应助幸福果汁采纳,获得10
27秒前
hqh发布了新的文献求助30
27秒前
你在烦恼什么呢关注了科研通微信公众号
27秒前
柚子蟹应助wjwless采纳,获得30
27秒前
28秒前
28秒前
29秒前
华子黄完成签到,获得积分10
29秒前
豆豆完成签到,获得积分10
30秒前
姚美阁完成签到 ,获得积分10
34秒前
碧蓝秋玲发布了新的文献求助10
34秒前
35秒前
35秒前
慕青应助白菜采纳,获得10
35秒前
大个应助lly采纳,获得10
36秒前
天天快乐应助陈曦采纳,获得10
36秒前
38秒前
WMQkingofk关注了科研通微信公众号
39秒前
39秒前
hb发布了新的文献求助10
41秒前
echo完成签到 ,获得积分10
41秒前
42秒前
碧蓝秋玲完成签到,获得积分10
42秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738374
求助须知:如何正确求助?哪些是违规求助? 3281845
关于积分的说明 10026729
捐赠科研通 2998684
什么是DOI,文献DOI怎么找? 1645363
邀请新用户注册赠送积分活动 782749
科研通“疑难数据库(出版商)”最低求助积分说明 749901