Geometric Deep Learning to Identify the Critical 3D Structural Features of the Optic Nerve Head for Glaucoma Diagnosis

青光眼 视神经 深度学习 人工智能 卷积神经网络 光学相干层析成像 计算机科学 点云 医学 眼科
作者
Fabian A. Braeu,Alexandre H. Thiéry,Tin A. Tun,Aistė Kadziauskienė,George Barbastathis,Tin Aung,Michaël J. A. Girard
出处
期刊:American Journal of Ophthalmology [Elsevier BV]
卷期号:250: 38-48 被引量:13
标识
DOI:10.1016/j.ajo.2023.01.008
摘要

To compare the performance of 2 relatively recent geometric deep learning techniques in diagnosing glaucoma from a single optical coherence tomographic (OCT) scan of the optic nerve head (ONH); and to identify the 3-dimensional (3D) structural features of the ONH that are critical for the diagnosis of glaucoma.Comparison and evaluation of deep learning diagnostic algorithms.In this study, we included a total of 2247 nonglaucoma and 2259 glaucoma scans from 1725 participants. All participants had their ONHs imaged in 3D with Spectralis OCT. All OCT scans were automatically segmented using deep learning to identify major neural and connective tissues. Each ONH was then represented as a 3D point cloud. We used PointNet and dynamic graph convolutional neural network (DGCNN) to diagnose glaucoma from such 3D ONH point clouds and to identify the critical 3D structural features of the ONH for glaucoma diagnosis.Both the DGCNN (area under the curve [AUC]: 0.97±0.01) and PointNet (AUC: 0.95±0.02) were able to accurately detect glaucoma from 3D ONH point clouds. The critical points (ie, critical structural features of the ONH) formed an hourglass pattern, with most of them located within the neuroretinal rim in the inferior and superior quadrant of the ONH.The diagnostic accuracy of both geometric deep learning approaches was excellent. Moreover, we were able to identify the critical 3D structural features of the ONH for glaucoma diagnosis that tremendously improved the transparency and interpretability of our method. Consequently, our approach may have strong potential to be used in clinical applications for the diagnosis and prognosis of a wide range of ophthalmic disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Starry完成签到 ,获得积分10
1秒前
柒柒发布了新的文献求助10
2秒前
hugdoggy完成签到,获得积分10
2秒前
爱lx发布了新的文献求助10
3秒前
ding应助李志敏采纳,获得10
3秒前
LinglongCai完成签到 ,获得积分10
4秒前
章鱼丸子发布了新的文献求助10
4秒前
5秒前
脑洞疼应助444采纳,获得10
5秒前
5秒前
汉堡包应助aniu采纳,获得10
7秒前
溪水完成签到 ,获得积分10
7秒前
9秒前
9秒前
研友_LJGoXn完成签到,获得积分10
10秒前
xiaoyangke完成签到,获得积分10
11秒前
科研通AI5应助秀丽大凄采纳,获得10
13秒前
2026毕业啦发布了新的文献求助10
13秒前
13秒前
英俊的铭应助Enoelle采纳,获得10
14秒前
15秒前
17秒前
汎影发布了新的文献求助10
17秒前
17秒前
xhuryts发布了新的文献求助10
18秒前
20秒前
传奇3应助科研通管家采纳,获得10
20秒前
英姑应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
彭于彦祖应助科研通管家采纳,获得20
20秒前
111应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
李健应助科研通管家采纳,获得10
20秒前
情怀应助科研通管家采纳,获得10
20秒前
caojiarong发布了新的文献求助10
21秒前
上官若男应助科研通管家采纳,获得10
21秒前
21秒前
充电宝应助科研通管家采纳,获得10
21秒前
Owen应助科研通管家采纳,获得10
21秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735743
求助须知:如何正确求助?哪些是违规求助? 3279522
关于积分的说明 10015750
捐赠科研通 2996212
什么是DOI,文献DOI怎么找? 1643951
邀请新用户注册赠送积分活动 781630
科研通“疑难数据库(出版商)”最低求助积分说明 749423