Ionic Liquid-Reduced Graphene Oxide Membrane with Enhanced Stability for Water Purification

渗透 材料科学 离子液体 石墨烯 化学工程 氧化物 水溶液 离子键合 纳米技术 有机化学 渗透 离子 化学 催化作用 生物化学 工程类 冶金
作者
Rahul S. Zambare,Xiaoxiao Song,S. Bhuvana,Chuyang Y. Tang,Antony Prince James Selvaraj,Parag R. Nemade
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (38): 43339-43353 被引量:28
标识
DOI:10.1021/acsami.2c12488
摘要

There has been a growing interest in water purification by graphene oxide (GO) laminate membranes due to their exceptional hydrophilicity, high throughput, and extraordinary separation performance originating from their two-dimensional and well-defined nanostructure. However, the swelling and stability in an aqueous environment are areas of concern for the GO laminate membranes. Here, a novel methylimidazolium ionic liquid-reduced GO (mimG)-assembled GO laminate membrane (mimG-GO) with remarkable stability was fabricated by a vacuum-assisted strategy for water purification. Methylimidazolium-based ionic liquid-reduced graphene oxide (mimG) was prepared by a facile nucleophilic ring-opening mechanism. Fabricated membranes were thoroughly characterized for stability, structural, permeance, and rejection properties in an aqueous environment. A combination of cationic mimG and GO nanosheets improves membrane stability in the aqueous environment via cation-π interactions and creates nanofluidic channels for facile water transport while yielding significant enhancement in the salt and dye separation performance. The pore size and the number of nanofluidic channels were precisely controlled via material deposition and laminate thickness to remove salts from water. The mimG-GO laminate membrane containing 72.2 mg m-2 deposition showed a permeance of 14.9 LMH bar-1, 50% higher than 9.7 LMH bar-1 of the neat GO laminate membrane, in addition to an increase in Na2SO4 salt rejection from 46.6 to 77.4%, overcoming the flux-rejection trade-off. The mimG-GO laminate membrane also rejected various anionic dyes (i.e., 99.9% for direct red 80 (DR 80), 96.8% for reactive black 5 (RB 5), and 91.4% for methyl orange (MO)). The mimG-GO laminate membrane containing 361.0 mg m-2 deposition showed the highest rejection for Na2SO4 (92.1%) and 99.9% rejection for DR 80, 99.0% rejection for RB 5, and 98.1% rejection for MO dyes keeping a flux of 2.6 LMH bar-1. Partial reduction and covalent grafting of ionic liquid moieties on GO helped to enhance the cation-π interaction between GO laminates, which showed enhanced stability, frictionless water transport, with high salt and dye rejection. Moreover, a simultaneous improvement in water permeance and solute rejection reveals the great potential of ionic liquid-functionalized GO laminate membranes for water-based applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安慧容发布了新的文献求助10
刚刚
liuqian发布了新的文献求助30
刚刚
刚刚
xiewuhua发布了新的文献求助10
刚刚
ZXY发布了新的文献求助10
1秒前
1秒前
杜ss发布了新的文献求助10
1秒前
1秒前
传奇3应助Goldensun采纳,获得10
2秒前
Akim应助标致的小天鹅采纳,获得10
2秒前
代代代发布了新的文献求助10
2秒前
3秒前
识趣完成签到,获得积分10
3秒前
4秒前
李爱国应助杨除夕采纳,获得10
4秒前
上官若男应助坤坤探花采纳,获得10
4秒前
shinysparrow应助旧事与九月采纳,获得200
5秒前
5秒前
orixero应助正直的枕头采纳,获得10
5秒前
Queoi发布了新的文献求助10
6秒前
学术小白发布了新的文献求助10
6秒前
7秒前
上官若男应助ZXY采纳,获得10
7秒前
sun发布了新的文献求助10
8秒前
更深的蓝完成签到,获得积分10
8秒前
海绵宝宝发布了新的文献求助10
8秒前
flyingrose完成签到,获得积分10
10秒前
10秒前
12秒前
正直的枕头完成签到,获得积分10
15秒前
追寻思雁发布了新的文献求助10
15秒前
su完成签到 ,获得积分10
15秒前
Queoi完成签到,获得积分20
15秒前
大模型应助young采纳,获得10
15秒前
sun完成签到,获得积分10
16秒前
16秒前
科研通AI5应助111采纳,获得10
16秒前
16秒前
16秒前
大个应助不笑猫采纳,获得30
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544116
求助须知:如何正确求助?哪些是违规求助? 3121321
关于积分的说明 9346532
捐赠科研通 2819334
什么是DOI,文献DOI怎么找? 1550167
邀请新用户注册赠送积分活动 722396
科研通“疑难数据库(出版商)”最低求助积分说明 713227