材料科学
电场
电介质
薄膜
电容器
铁电性
微电子
相界
储能
极化(电化学)
光电子学
凝聚态物理
工程物理
纳米技术
化学物理
相(物质)
电气工程
电压
热力学
物理
工程类
物理化学
功率(物理)
有机化学
化学
量子力学
作者
Yunlong Sun,Le Zhang,Qianwei Huang,Zibin Chen,Dong Wang,Mohammad Moein Seyfouri,Shery L. Y. Chang,Yu Wang,Qi Zhang,Xiaozhou Liao,Sean Li,Shujun Zhang,Danyang Wang
标识
DOI:10.1002/advs.202203926
摘要
Abstract The current approach to achieving superior energy storage density in dielectrics is to increase their breakdown strength, which often incurs heat generation and unexpected insulation failures, greatly deteriorating the stability and lifetime of devices. Here, a strategy is proposed for enhancing recoverable energy storage density ( W r ) while maintaining a high energy storage efficiency ( η) in glassy ferroelectrics by creating super tetragonal (super‐T) nanostructures around morphotropic phase boundary (MPB) rather than exploiting the intensely strong electric fields. Accordingly, a giant W r of ≈86 J cm −3 concomitant with a high η of ≈81% is acquired under a moderate electric field (1.7 MV cm −1 ) in thin films having MPB composition, namely, 0.94(Bi, Na)TiO 3 ‐0.06BaTiO 3 (BNBT), where the local super‐T polar clusters (tetragonality ≈1.25) are stabilized by interphase strain. To the knowledge of the authors, the W r of the engineered BNBT thin films represents a new record among all the oxide perovskites under a similar strength of electric field to date. The phase field simulation results ascertain that the improved W r is attributed to the local strain heterogeneity and the large spontaneous polarization primarily is originated from the super‐T polar clusters. The findings in this work present a genuine opportunity to develop ultrahigh‐energy‐density thin‐film capacitors for low‐electric‐field‐driven nano/microelectronics.
科研通智能强力驱动
Strongly Powered by AbleSci AI