Machine learning to detect Alzheimer's disease with data on drugs and diagnoses

医学诊断 疾病 阿尔茨海默病 医学 神经科学 心理学 数据科学 计算机科学 病理
作者
Johanna Wallensten,Caroline Wachtler,Nenad Bogdanović,Anna Olofsson,Miia Kivipelto,Linus Jönsson,Predrag Petrović,Axel C. Carlsson
出处
期刊:JPAD [Springer Science+Business Media]
卷期号:: 100115-100115
标识
DOI:10.1016/j.tjpad.2025.100115
摘要

Integrating machine learning with medical records offers potential for early detection of Alzheimer's disease (AD), enabling timely interventions. This study aimed to evaluate the effectiveness of machine learning in constructing a predictive model for AD, designed to predict AD with data up to three years before diagnosis. Using clinical data, including prior diagnoses and medical treatments, we sought to enhance sensitivity and specificity in diagnostic procedures. A second aim was to identify the most important factors in the machine learning models, as these may be important predictors of AD. The study employed Stochastic Gradient Boosting, a machine learning method, to identify diagnoses predictive of AD using primary healthcare data. The analyses were stratified by sex and age groups. The study included individuals within Region Stockholm, Sweden, using medical records from 2010 to 2022. The study analyzed clinical data for individuals over the age of 40. Patients with an AD diagnosis (ICD-10-SE codes F00 or G30) during 2010-2012 were excluded to ensure prospective modeling. In total, AD was identified in 3,407 patients aged 41-69 years and 25,796 patients aged over 69. The machine learning model ranked predictive diagnoses, with performance assessed by the area under the receiver operating characteristic curve (AUC). Known and novel predictors were evaluated for their contribution to AD risk. AUC values ranged from 0.748 (women aged 41-69) to 0.816 (women over 69), with men across age groups falling within this range. Sensitivity and specificity ranged from 0.73 to 0.79 and 0.66 to 0.79, respectively, across age and gender groups. Negative predictive values were consistently high (≥0.954), while positive predictive values were lower (0.199-0.351). Additionally, we confirmed known risk factors as predictors and identified novel predictors that warrant further investigation. Key predictors included medical observations, cognitive symptoms, antidepressant treatment, visit frequency, and vitamin B12/folic acid treatment. Machine learning applied to clinical data shows promise in predicting AD, with robust model performance across age and sex groups. The findings confirmed known risk factors, such as depression and vitamin B12 deficiency, while also identifying novel predictors that may guide future research. Clinically, this approach could enhance early detection and risk stratification, facilitating timely interventions and improving patient outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极的中蓝完成签到 ,获得积分10
5秒前
6秒前
WANGs完成签到 ,获得积分10
6秒前
8秒前
8秒前
8秒前
8秒前
星光完成签到 ,获得积分10
10秒前
十三完成签到 ,获得积分10
10秒前
11秒前
alixy完成签到,获得积分10
13秒前
LQX2141发布了新的文献求助10
15秒前
CHSLN完成签到 ,获得积分10
15秒前
数学情缘完成签到 ,获得积分10
17秒前
ran完成签到 ,获得积分10
19秒前
草莓熊1215完成签到 ,获得积分10
23秒前
alexlpb完成签到,获得积分0
25秒前
zhilianghui0807完成签到 ,获得积分10
26秒前
小花小宝和阿飞完成签到 ,获得积分10
28秒前
执着的忆雪完成签到 ,获得积分10
29秒前
海阔天空完成签到,获得积分0
32秒前
彬彬完成签到 ,获得积分10
34秒前
CYYDNDB完成签到 ,获得积分10
37秒前
草木完成签到 ,获得积分10
39秒前
vvvaee完成签到 ,获得积分10
40秒前
kanong完成签到,获得积分0
47秒前
完美世界应助萝卜猪采纳,获得30
48秒前
猫的毛完成签到 ,获得积分10
50秒前
whitepiece完成签到,获得积分10
53秒前
白昼の月完成签到 ,获得积分0
53秒前
dreamwalk完成签到 ,获得积分10
56秒前
温馨完成签到 ,获得积分10
57秒前
李凭中国弹箜篌完成签到,获得积分10
58秒前
1分钟前
1分钟前
madison完成签到 ,获得积分10
1分钟前
科研通AI5应助菜青虫采纳,获得10
1分钟前
兔兔完成签到 ,获得积分10
1分钟前
予秋发布了新的文献求助10
1分钟前
大气傲易完成签到 ,获得积分10
1分钟前
高分求助中
The Foraging Behavior of the Honey Bee (Apis mellifera, L.) 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Comprehensive Supramolecular Chemistry II 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Avialinguistics:The Study of Language for Aviation Purposes 270
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3681720
求助须知:如何正确求助?哪些是违规求助? 3233596
关于积分的说明 9809213
捐赠科研通 2945073
什么是DOI,文献DOI怎么找? 1615091
邀请新用户注册赠送积分活动 762551
科研通“疑难数据库(出版商)”最低求助积分说明 737473