苹果酸脱氢酶
生物
生物化学
苹果酸
猕猴桃
基因表达
基因
叶绿体
有机酸
GATA转录因子
分子生物学
植物
柠檬酸
酶
发起人
作者
Tonghui Qi,Y. Q. Huang,Jiahui Deng,Bei‐ling Fu,Xiang Li,Shaojia Li,Andrew C. Allan,Yin X
摘要
Organic acids are major contributors to the flavor of fleshy fruits. In kiwifruit, the Al-ACTIVATED MALATE TRANSPORTER gene (AcALMT1) is key to the accumulation of citrate, while factors driving malate metabolism remain largely unknown. During kiwifruit (Actinidia chinensis cv "Hongyang") development, a rapid decline of malate content was observed between 6 and 12 weeks after full bloom (WAFB), which was studied using RNA-seq analysis. Co-expression network analysis indicated that expression of the chloroplast localized AcPNAD-MDH1 (Plastid-Localized NAD-Dependent Malate Dehydrogenase) negatively correlated with malate content. Overexpression of AcPNAD-MDH1 in kiwifruit resulted lower malate and citrate content in leaves. Among 15 transcription factors that are highly correlated with the expression of AcPNAD-MDH1, AcSQBP9 (SQUAMOSA PROMOTER-BINDING PROTEIN) was shown to directly bind the promoter of AcPNAD-MDH1 to repress transcriptional activity. Moreover, targeted CRISPR-Cas9-induced mutagenesis of AcSQBP9 in kiwifruit produced a significant decrease in malate and citrate, accompanied by an increase in AcPNAD-MDH1 expression. Both PNAD-MDH and SQBP have not been widely studied in fruit metabolism, so the present omics-oriented study provides insights for both kiwifruit and general plant organic acid metabolism.
科研通智能强力驱动
Strongly Powered by AbleSci AI