A Single H2S-Releasing Nanozyme for Comprehensive Diabetic Wound Healing through Multistep Intervention

材料科学 伤口愈合 干预(咨询) 生物医学工程 纳米技术 医学 护理部 外科
作者
Ying Yin,Wentai Guo,Q Y Chen,Zhimin Tang,Zheng Liu,Ruibin Lin,Ting Pan,Jiezhao Zhan,Li Ren
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.5c00889
摘要

Diabetic wound healing presents a significant medical challenge and requires multistep interventions due to comprehensive wound environments, such as hyperglycemia, bacterial infection, and impaired angiogenesis. However, current multistep interventions are complicated and need on-demand sequential release and synergy of multicomponents. Herein, a H2S-releasing cascade nanozyme (FeS@Au), which is composed of ultrasmall gold nanocluster (AuNC) loaded on ferrous sulfide nanoparticle (FeSNP), is developed as a single component to regulate glucose level, eliminate infection, and promote angiogenesis, achieving multistep interventions for comprehensive diabetic wound treatment. The glucose oxidase-like activity of AuNC catalyzes glucose into gluconic acid and H2O2, which not only lowers the local glucose level but also decreases the local pH and increases H2O2 level to boost the peroxidase-like activity of FeSNP to generate abundant hydroxyl radical (reactive oxygen species, ROS), inducing ferroptosis-like death in drug-resistant bacteria. Additionally, FeSNP release H2S in the acidified environment to upregulate hypoxia-inducible factor-1 to enhance vascularization through upregulating the expression of vascular endothelial growth factor (VEGF) and other angiogenesis-related genes, reducing the damage to endothelial cells caused by excessive ROS produced by the nanozyme. In a full-thickness MRSA-infected diabetic rat model, FeS@Au significantly eliminates bacteria, enhances angiogenesis, promotes collagen deposition, and accelerates wound healing. This work presents a single nanozyme with H2S-release for multistep interventions, providing a versatile strategy for healing extensive tissue damage caused by diabetes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明亮的元柏完成签到,获得积分10
刚刚
lilippx完成签到 ,获得积分10
1秒前
1秒前
冷静的青文完成签到,获得积分10
1秒前
1秒前
roywin发布了新的文献求助10
2秒前
无花果应助禾下乘凉采纳,获得10
2秒前
2秒前
Magical发布了新的文献求助10
4秒前
lllllnnnnj完成签到,获得积分10
5秒前
www完成签到,获得积分10
5秒前
海风完成签到,获得积分10
6秒前
动听的靖琪完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
勤恳剑身发布了新的文献求助10
7秒前
SYLH应助风中天宇采纳,获得10
8秒前
8秒前
jjh完成签到,获得积分10
8秒前
llf发布了新的文献求助10
8秒前
9秒前
禾下乘凉完成签到,获得积分20
10秒前
10秒前
11秒前
FANTASY完成签到,获得积分20
12秒前
Biye完成签到,获得积分10
12秒前
xjq137666发布了新的文献求助10
12秒前
随风完成签到,获得积分10
12秒前
Yoki完成签到,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
风中天宇完成签到,获得积分20
14秒前
小熊完成签到,获得积分10
14秒前
科研通AI5应助鲁班7号采纳,获得80
15秒前
Missing发布了新的文献求助10
15秒前
Lemon完成签到 ,获得积分10
15秒前
kk发布了新的文献求助10
16秒前
wry完成签到,获得积分10
16秒前
gogogogog发布了新的文献求助10
16秒前
1x完成签到 ,获得积分20
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663210
求助须知:如何正确求助?哪些是违规求助? 3223884
关于积分的说明 9753900
捐赠科研通 2933764
什么是DOI,文献DOI怎么找? 1606392
邀请新用户注册赠送积分活动 758489
科研通“疑难数据库(出版商)”最低求助积分说明 734792