Fresh Tea Leaf-Grading Detection: An Improved YOLOv8 Neural Network Model Utilizing Deep Learning

人工神经网络 园艺 深度学习 分级(工程) 人工智能 植物 计算机科学 生物 生态学
作者
Zejun Wang,Yuxin Xia,Houqiao Wang,Xiaohui Liu,Raoqiong Che,Xiaoxue Guo,Hongxu Li,Shihao Zhang,Baijuan Wang
出处
期刊:Horticulturae [MDPI AG]
卷期号:10 (12): 1347-1347
标识
DOI:10.3390/horticulturae10121347
摘要

To facilitate the realization of automated tea picking and enhance the speed and accuracy of tea leaf grading detection, this study proposes an improved YOLOv8 network for fresh tea leaf grading recognition. This approach integrates a Hierarchical Vision Transformer using Shifted Windows to replace segments of the original YOLOv8’s network architecture, thereby alleviating the computational load of dense image processing tasks and reducing computational expenses. The incorporation of an Efficient Multi-Scale Attention Module with Cross-Spatial Learning serves to attenuate the influence of irrelevant features in complex backgrounds, which in turn, elevates the model’s detection Precision. Additionally, the substitution of the loss function with SIoU facilitates a more rapid model convergence and a more precise pinpointing of defect locations. The empirical findings indicate that the enhanced YOLOv8 algorithm has achieved a marked improvement in metrics such as Precision, Recall, F1, and mAP, with increases of 3.39%, 0.86%, 2.20%, and 2.81% respectively, when juxtaposed with the original YOLOv8 model. Moreover, in external validations, the FPS enhancements over the original YOLOv8, YOLOv5, YOLOX, Faster RCNN, and SSD deep-learning models are 6.75 Hz, 10.84 Hz, 12.79 Hz, 28.24 Hz, and 21.57 Hz, respectively, and the mAP improvements in practical detection are 2.79%, 2.92%, 3.08%, 7.07%, and 3.84% respectively. The refined model not only ensures efficient and accurate tea-grading recognition but also boasts high recognition rates and swift detection capabilities, thereby establishing a foundation for the development of tea-picking robots and tea quality grading devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
佳2完成签到,获得积分10
刚刚
在水一方应助gww采纳,获得10
1秒前
天真的idiot完成签到 ,获得积分10
1秒前
2秒前
风趣丝应助明天采纳,获得10
4秒前
乌龟gogogo完成签到 ,获得积分10
5秒前
yoona发布了新的文献求助10
5秒前
MAIDANG发布了新的文献求助10
6秒前
wanci应助一朵云采纳,获得10
7秒前
1112234111发布了新的文献求助10
8秒前
Orange应助路遥采纳,获得10
9秒前
英勇书蕾完成签到,获得积分10
9秒前
djsj应助升学顺利身体健康采纳,获得30
9秒前
落后白亦完成签到,获得积分10
10秒前
昴星引路完成签到 ,获得积分10
10秒前
搜集达人应助Tzzl0226采纳,获得10
12秒前
一路向北关注了科研通微信公众号
14秒前
乌冬面完成签到,获得积分10
15秒前
nn发布了新的文献求助10
16秒前
17秒前
18秒前
18秒前
昴星引路完成签到 ,获得积分10
18秒前
19秒前
大模型应助专注钢笔采纳,获得10
20秒前
20秒前
lius完成签到,获得积分10
20秒前
21秒前
21秒前
1112234111完成签到,获得积分10
21秒前
小李李李李李给小李李李李李的求助进行了留言
21秒前
霸气太英发布了新的文献求助10
22秒前
Janus发布了新的文献求助10
22秒前
bkagyin应助史莱莱莱姆采纳,获得10
22秒前
彭于晏应助幼儿园小霸王采纳,获得10
23秒前
23秒前
YZLZ发布了新的文献求助10
23秒前
淳于汲发布了新的文献求助10
24秒前
研友_LwM9JZ完成签到,获得积分10
25秒前
Tzzl0226发布了新的文献求助10
27秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483773
求助须知:如何正确求助?哪些是违规求助? 3073002
关于积分的说明 9128881
捐赠科研通 2764596
什么是DOI,文献DOI怎么找? 1517290
邀请新用户注册赠送积分活动 701998
科研通“疑难数据库(出版商)”最低求助积分说明 700849