S3F2Net: Spatial-spectral-structural Feature Fusion Network for Hyperspectral Image and LiDAR Data Classification

高光谱成像 人工智能 激光雷达 模式识别(心理学) 计算机科学 特征(语言学) 图像融合 上下文图像分类 特征提取 融合 传感器融合 计算机视觉 遥感 图像(数学) 地质学 语言学 哲学
作者
Xianghai Wang,Liyang Song,Yining Feng,Junheng Zhu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tcsvt.2025.3525734
摘要

The continuous development of Earth observation (EO) technology has significantly increased the availability of multi-sensor remote sensing (RS) data. The fusion of hyperspectral image (HSI) and light detection and ranging (LiDAR) data has become a research hotspot. Current mainstream convolutional neural networks (CNNs) excel at extracting local features from images but have limitations in modeling global information, which may affect the performance of classification tasks. In contrast, modern graph convolutional networks (GCNs) excel at capturing global information, particularly demonstrating significant advantages when processing RS images with irregular topological structures. By integrating these two frameworks, features can be fused from multiple perspectives, enabling a more comprehensive capture of multimodal data attributes and improving classification performance. The paper proposes a spatial-spectral-structural feature fusion network (S3F2Net) for HSI and LiDAR data classification. S3F2Net utilizes multiple architectures to extract rich features of multimodal data from different perspectives. On one hand, local spatial and spectral features of multimodal data are extracted using CNN, enhancing interactions among heterogeneous data through shared-weight convolution to achieve detailed representations of land cover. On the other hand, the global topological structure is learned using GCN, which models the spatial relationships between land cover types through graph structure constructed from LiDAR data, thereby enhancing the model's understanding of scene content. Furthermore, the dynamic node updating strategy within the GCN enhances the model's ability to identify representative nodes for specific land cover types while facilitating information aggregation among remote nodes, thereby strengthening adaptability to complex topological structures. By employing a multi-level information fusion strategy to integrate data representations from both global and local perspectives, the accuracy and reliability of the results are ensured. Compared with state-of-the-art (SOTA) methods, the framework's validity is verified on three real multimodal RS datasets. The source code will be available at https://github.com/slylnnu/S3F2Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有魅力的觅双完成签到,获得积分10
1秒前
尺素寸心完成签到,获得积分10
1秒前
1秒前
3秒前
Owen应助张喜喜采纳,获得10
5秒前
gomm发布了新的文献求助10
5秒前
超级的纸鹤完成签到,获得积分20
5秒前
烂漫白桃发布了新的文献求助10
6秒前
ww发布了新的文献求助10
8秒前
每天我都睡得好完成签到 ,获得积分10
9秒前
10秒前
善学以致用应助郄建茹采纳,获得10
11秒前
11秒前
15秒前
顾矜应助大侦探皮卡丘采纳,获得10
15秒前
烟花应助HJJHJH采纳,获得10
16秒前
jjjdcjcj完成签到,获得积分10
16秒前
小青虫发布了新的文献求助10
17秒前
18秒前
情怀应助威武大将军采纳,获得10
18秒前
19秒前
Orange应助祈凛采纳,获得10
19秒前
22秒前
22秒前
希望天下0贩的0应助好好采纳,获得10
23秒前
judy完成签到 ,获得积分10
24秒前
25秒前
26秒前
27秒前
28秒前
29秒前
30秒前
郄建茹发布了新的文献求助10
30秒前
wwwwppp完成签到,获得积分10
31秒前
32秒前
冷艳广山发布了新的文献求助20
32秒前
YataMisaki发布了新的文献求助10
32秒前
35秒前
好好发布了新的文献求助10
36秒前
科目三应助哈哈哈哈哈不采纳,获得10
36秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735903
求助须知:如何正确求助?哪些是违规求助? 3279592
关于积分的说明 10016324
捐赠科研通 2996292
什么是DOI,文献DOI怎么找? 1644012
邀请新用户注册赠送积分活动 781709
科研通“疑难数据库(出版商)”最低求助积分说明 749425