亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SS-DETR: A Strong Sensing DETR Road Obstacle Detection Model Based on Camera Sensors for Autonomous Driving

障碍物 计算机科学 计算机视觉 遥感 环境科学 人工智能 地理 考古
作者
Xiaomei Li,Xiong Deng,Xiaoyong Wu,Zhijiang Xie
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ada4c8
摘要

Abstract As a key step in obstacle avoidance and path planning, obstacle detection via camera sensors is crucial for autonomous driving. The real traffic road environment is complex and variable, and the existing obstacle detection algorithms still have the problem of insufficient sensing ability. Therefore, this work suggests a camera sensors-based Strong Sensing DEtection TRansformer (SS-DETR) obstacle detection model for autonomous driving. Firstly, Receptive-Field Attention ResNet (RFARNet) is designed to improve feature analysis and extraction performance by considering the importance of receptive field spatial features and channels. Then, an intra-scale feature interaction (IFI) module based on multiple information fusion attention (MIFA) is created to strengthen the representation of advanced feature maps. Furthermore, the cross-scale feature-fusion module (CFM) is optimized to extract more detailed information from multi-scale feature maps. Finally, a localization loss function based on L1 and Powerful Intersection over Union (PIoU) v2 is implemented to further boost the detection performance. To verify the efficacy of the suggested model, the KITTI dataset containing camera sensors-based road obstacle images is adopted. The experimental results reveal that compared to Real-Time DETR (RT-DETR), SS-DETR improves mean Average Precision (mAP)@50:95 and mAP@50 by 2.4% and 1.9%, respectively, and has a real-time inference speed of 33.7 frames per second (FPS). To further confirm the generalization ability of the approach, experiments are conducted on the camera sensors-based Cityscapes dataset. The results divulge that the suggested strategy can effectively raise the detection accuracy of obstacles, and offer a fresh perspective on obstacle identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冒菜很好吃给冒菜很好吃的求助进行了留言
5秒前
doni发布了新的文献求助10
11秒前
15秒前
35秒前
39秒前
FashionBoy应助失眠靖雁采纳,获得10
48秒前
小丫完成签到,获得积分20
53秒前
ccczzz发布了新的文献求助10
1分钟前
鬼笔环肽应助科研通管家采纳,获得10
1分钟前
tuanheqi应助科研通管家采纳,获得150
1分钟前
上官若男应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得20
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
失眠靖雁完成签到,获得积分20
1分钟前
1分钟前
1分钟前
1分钟前
失眠靖雁发布了新的文献求助10
1分钟前
瘦瘦的艳关注了科研通微信公众号
1分钟前
Nut发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Nut完成签到,获得积分10
1分钟前
北方柔和的干姜完成签到,获得积分10
1分钟前
风笛完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Lee发布了新的文献求助10
1分钟前
瘦瘦的艳发布了新的文献求助10
1分钟前
Lee完成签到,获得积分10
1分钟前
王健锟应助唐泽雪穗采纳,获得50
1分钟前
王健锟应助唐泽雪穗采纳,获得60
1分钟前
王健锟应助唐泽雪穗采纳,获得80
1分钟前
王健锟应助唐泽雪穗采纳,获得70
1分钟前
王健锟应助唐泽雪穗采纳,获得70
1分钟前
王健锟应助唐泽雪穗采纳,获得70
1分钟前
王健锟应助唐泽雪穗采纳,获得50
1分钟前
瘦瘦的艳完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5173170
求助须知:如何正确求助?哪些是违规求助? 4363152
关于积分的说明 13585159
捐赠科研通 4211507
什么是DOI,文献DOI怎么找? 2309829
邀请新用户注册赠送积分活动 1308897
关于科研通互助平台的介绍 1256261