SS-DETR: A Strong Sensing DETR Road Obstacle Detection Model Based on Camera Sensors for Autonomous Driving

障碍物 计算机科学 计算机视觉 遥感 环境科学 人工智能 地理 考古
作者
Xiaomei Li,Xiong Deng,Xiaoyong Wu,Zhijiang Xie
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ada4c8
摘要

Abstract As a key step in obstacle avoidance and path planning, obstacle detection via camera sensors is crucial for autonomous driving. The real traffic road environment is complex and variable, and the existing obstacle detection algorithms still have the problem of insufficient sensing ability. Therefore, this work suggests a camera sensors-based Strong Sensing DEtection TRansformer (SS-DETR) obstacle detection model for autonomous driving. Firstly, Receptive-Field Attention ResNet (RFARNet) is designed to improve feature analysis and extraction performance by considering the importance of receptive field spatial features and channels. Then, an intra-scale feature interaction (IFI) module based on multiple information fusion attention (MIFA) is created to strengthen the representation of advanced feature maps. Furthermore, the cross-scale feature-fusion module (CFM) is optimized to extract more detailed information from multi-scale feature maps. Finally, a localization loss function based on L1 and Powerful Intersection over Union (PIoU) v2 is implemented to further boost the detection performance. To verify the efficacy of the suggested model, the KITTI dataset containing camera sensors-based road obstacle images is adopted. The experimental results reveal that compared to Real-Time DETR (RT-DETR), SS-DETR improves mean Average Precision (mAP)@50:95 and mAP@50 by 2.4% and 1.9%, respectively, and has a real-time inference speed of 33.7 frames per second (FPS). To further confirm the generalization ability of the approach, experiments are conducted on the camera sensors-based Cityscapes dataset. The results divulge that the suggested strategy can effectively raise the detection accuracy of obstacles, and offer a fresh perspective on obstacle identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一心完成签到,获得积分10
1秒前
皮卡丘比特完成签到,获得积分10
1秒前
FashionBoy应助愤怒的山兰采纳,获得10
2秒前
不安青牛应助nice1025采纳,获得20
2秒前
2秒前
小蘑菇应助Hhh采纳,获得30
2秒前
anan发布了新的文献求助10
4秒前
慕青应助高大的砖家采纳,获得10
4秒前
tou完成签到,获得积分10
4秒前
4秒前
6秒前
memory发布了新的文献求助10
7秒前
在水一方应助炙热的书竹采纳,获得10
7秒前
咩咩咩咩发布了新的文献求助10
8秒前
9秒前
He发布了新的文献求助30
11秒前
muyi完成签到,获得积分10
12秒前
haoyunlai完成签到,获得积分10
13秒前
坦率的山菡完成签到,获得积分20
13秒前
14秒前
14秒前
bai应助红萌馆管家采纳,获得10
14秒前
14秒前
zoes完成签到 ,获得积分10
15秒前
可爱的函函应助阿xi霸采纳,获得10
16秒前
周杰完成签到,获得积分10
18秒前
64658应助亚南采纳,获得10
18秒前
lsfAZIBhydrogel完成签到,获得积分10
19秒前
19秒前
paixxxxx发布了新的文献求助30
20秒前
hudu完成签到,获得积分10
20秒前
jiujiu关注了科研通微信公众号
20秒前
20秒前
ning完成签到,获得积分10
20秒前
21秒前
上官若男应助凡仔采纳,获得10
21秒前
Sissi完成签到,获得积分10
22秒前
咩咩咩咩完成签到,获得积分10
22秒前
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4558330
求助须知:如何正确求助?哪些是违规求助? 3985350
关于积分的说明 12338439
捐赠科研通 3655702
什么是DOI,文献DOI怎么找? 2013951
邀请新用户注册赠送积分活动 1048833
科研通“疑难数据库(出版商)”最低求助积分说明 937181