亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SS-DETR: A Strong Sensing DETR Road Obstacle Detection Model Based on Camera Sensors for Autonomous Driving

障碍物 计算机科学 计算机视觉 遥感 环境科学 人工智能 地理 考古
作者
Xiaomei Li,Xiong Deng,Xiaoyong Wu,Zhijiang Xie
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ada4c8
摘要

Abstract As a key step in obstacle avoidance and path planning, obstacle detection via camera sensors is crucial for autonomous driving. The real traffic road environment is complex and variable, and the existing obstacle detection algorithms still have the problem of insufficient sensing ability. Therefore, this work suggests a camera sensors-based Strong Sensing DEtection TRansformer (SS-DETR) obstacle detection model for autonomous driving. Firstly, Receptive-Field Attention ResNet (RFARNet) is designed to improve feature analysis and extraction performance by considering the importance of receptive field spatial features and channels. Then, an intra-scale feature interaction (IFI) module based on multiple information fusion attention (MIFA) is created to strengthen the representation of advanced feature maps. Furthermore, the cross-scale feature-fusion module (CFM) is optimized to extract more detailed information from multi-scale feature maps. Finally, a localization loss function based on L1 and Powerful Intersection over Union (PIoU) v2 is implemented to further boost the detection performance. To verify the efficacy of the suggested model, the KITTI dataset containing camera sensors-based road obstacle images is adopted. The experimental results reveal that compared to Real-Time DETR (RT-DETR), SS-DETR improves mean Average Precision (mAP)@50:95 and mAP@50 by 2.4% and 1.9%, respectively, and has a real-time inference speed of 33.7 frames per second (FPS). To further confirm the generalization ability of the approach, experiments are conducted on the camera sensors-based Cityscapes dataset. The results divulge that the suggested strategy can effectively raise the detection accuracy of obstacles, and offer a fresh perspective on obstacle identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Don完成签到 ,获得积分10
刚刚
兴奋雅寒完成签到,获得积分10
1秒前
冷静的访天完成签到 ,获得积分10
2秒前
Q123ba叭发布了新的文献求助10
3秒前
4秒前
yyyalles完成签到,获得积分10
7秒前
yyyalles发布了新的文献求助10
11秒前
zxy完成签到 ,获得积分10
12秒前
枫于林完成签到 ,获得积分10
13秒前
123完成签到 ,获得积分10
13秒前
尉迟明风完成签到 ,获得积分10
13秒前
风中黎昕完成签到 ,获得积分10
20秒前
星辰大海应助江月年采纳,获得10
22秒前
Aliya完成签到 ,获得积分10
26秒前
从容的安双完成签到,获得积分10
31秒前
39秒前
39秒前
Leofar完成签到 ,获得积分10
39秒前
fengyvan完成签到,获得积分10
40秒前
环走鱼尾纹完成签到 ,获得积分10
41秒前
超帅曼柔完成签到,获得积分10
42秒前
方班术完成签到,获得积分10
42秒前
44秒前
方班术发布了新的文献求助10
45秒前
hjmxb完成签到,获得积分10
45秒前
Ava应助平常马里奥采纳,获得10
49秒前
852应助含蓄问安采纳,获得10
50秒前
Z趋势完成签到,获得积分10
55秒前
56秒前
57秒前
58秒前
dyp完成签到,获得积分10
59秒前
1分钟前
赶紧毕业完成签到,获得积分10
1分钟前
1分钟前
1分钟前
dyp发布了新的文献求助30
1分钟前
赶紧毕业发布了新的文献求助10
1分钟前
研友_VZG7GZ应助科研进化中采纳,获得10
1分钟前
余一台发布了新的文献求助10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965562
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155315
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792808
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176