SS-DETR: A Strong Sensing DETR Road Obstacle Detection Model Based on Camera Sensors for Autonomous Driving

障碍物 计算机科学 计算机视觉 遥感 环境科学 人工智能 地理 考古
作者
Xiaomei Li,Xiong Deng,Xiaoyong Wu,Zhijiang Xie
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ada4c8
摘要

Abstract As a key step in obstacle avoidance and path planning, obstacle detection via camera sensors is crucial for autonomous driving. The real traffic road environment is complex and variable, and the existing obstacle detection algorithms still have the problem of insufficient sensing ability. Therefore, this work suggests a camera sensors-based Strong Sensing DEtection TRansformer (SS-DETR) obstacle detection model for autonomous driving. Firstly, Receptive-Field Attention ResNet (RFARNet) is designed to improve feature analysis and extraction performance by considering the importance of receptive field spatial features and channels. Then, an intra-scale feature interaction (IFI) module based on multiple information fusion attention (MIFA) is created to strengthen the representation of advanced feature maps. Furthermore, the cross-scale feature-fusion module (CFM) is optimized to extract more detailed information from multi-scale feature maps. Finally, a localization loss function based on L1 and Powerful Intersection over Union (PIoU) v2 is implemented to further boost the detection performance. To verify the efficacy of the suggested model, the KITTI dataset containing camera sensors-based road obstacle images is adopted. The experimental results reveal that compared to Real-Time DETR (RT-DETR), SS-DETR improves mean Average Precision (mAP)@50:95 and mAP@50 by 2.4% and 1.9%, respectively, and has a real-time inference speed of 33.7 frames per second (FPS). To further confirm the generalization ability of the approach, experiments are conducted on the camera sensors-based Cityscapes dataset. The results divulge that the suggested strategy can effectively raise the detection accuracy of obstacles, and offer a fresh perspective on obstacle identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
3秒前
3秒前
kakashi完成签到,获得积分10
3秒前
nuonuo发布了新的文献求助10
3秒前
梦里的大子刊完成签到 ,获得积分10
4秒前
5秒前
大模型应助猪猪hero采纳,获得10
6秒前
张乐发布了新的文献求助30
7秒前
Jenny712发布了新的文献求助10
8秒前
LYH完成签到,获得积分10
9秒前
健壮从霜发布了新的文献求助10
10秒前
11秒前
11秒前
lanjq兰坚强完成签到,获得积分10
12秒前
13秒前
ttt完成签到,获得积分10
14秒前
情怀应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
传奇3应助科研通管家采纳,获得10
15秒前
Hello应助科研通管家采纳,获得10
15秒前
Cleo应助科研通管家采纳,获得10
15秒前
15秒前
wlscj应助科研通管家采纳,获得20
15秒前
浮游应助科研通管家采纳,获得10
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得10
16秒前
evvj发布了新的文献求助10
16秒前
华仔应助科研通管家采纳,获得30
16秒前
无限的灵阳完成签到 ,获得积分20
16秒前
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得30
16秒前
wanci应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
16秒前
lawang发布了新的文献求助20
16秒前
amberzyc应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414857
求助须知:如何正确求助?哪些是违规求助? 4531710
关于积分的说明 14129736
捐赠科研通 4447140
什么是DOI,文献DOI怎么找? 2439607
邀请新用户注册赠送积分活动 1431701
关于科研通互助平台的介绍 1409315