SS-DETR: A Strong Sensing DETR Road Obstacle Detection Model Based on Camera Sensors for Autonomous Driving

障碍物 计算机科学 计算机视觉 遥感 环境科学 人工智能 地理 考古
作者
Xiaomei Li,Xiong Deng,Xiaoyong Wu,Zhijiang Xie
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ada4c8
摘要

Abstract As a key step in obstacle avoidance and path planning, obstacle detection via camera sensors is crucial for autonomous driving. The real traffic road environment is complex and variable, and the existing obstacle detection algorithms still have the problem of insufficient sensing ability. Therefore, this work suggests a camera sensors-based Strong Sensing DEtection TRansformer (SS-DETR) obstacle detection model for autonomous driving. Firstly, Receptive-Field Attention ResNet (RFARNet) is designed to improve feature analysis and extraction performance by considering the importance of receptive field spatial features and channels. Then, an intra-scale feature interaction (IFI) module based on multiple information fusion attention (MIFA) is created to strengthen the representation of advanced feature maps. Furthermore, the cross-scale feature-fusion module (CFM) is optimized to extract more detailed information from multi-scale feature maps. Finally, a localization loss function based on L1 and Powerful Intersection over Union (PIoU) v2 is implemented to further boost the detection performance. To verify the efficacy of the suggested model, the KITTI dataset containing camera sensors-based road obstacle images is adopted. The experimental results reveal that compared to Real-Time DETR (RT-DETR), SS-DETR improves mean Average Precision (mAP)@50:95 and mAP@50 by 2.4% and 1.9%, respectively, and has a real-time inference speed of 33.7 frames per second (FPS). To further confirm the generalization ability of the approach, experiments are conducted on the camera sensors-based Cityscapes dataset. The results divulge that the suggested strategy can effectively raise the detection accuracy of obstacles, and offer a fresh perspective on obstacle identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助瘦瘦灵寒采纳,获得20
刚刚
徐锋发布了新的文献求助10
1秒前
wb发布了新的文献求助30
1秒前
whh发布了新的文献求助10
1秒前
勤苦的牛马完成签到,获得积分10
1秒前
1秒前
2秒前
领导范儿应助努力哥采纳,获得10
2秒前
3秒前
msk发布了新的文献求助10
3秒前
天天向上发布了新的文献求助10
4秒前
思源应助吉尔吉斯斯坦采纳,获得10
5秒前
5秒前
dew应助斯文明杰采纳,获得10
6秒前
沉默的语堂完成签到,获得积分10
6秒前
小柠檬发布了新的文献求助10
6秒前
DR发布了新的文献求助30
6秒前
6秒前
7秒前
8秒前
8秒前
8秒前
英俊的铭应助唐唐采纳,获得10
8秒前
xingxing完成签到,获得积分10
8秒前
柒辞完成签到,获得积分10
8秒前
9秒前
wanci应助阿谭采纳,获得10
9秒前
你好关注了科研通微信公众号
10秒前
11秒前
打打应助兴奋的新晴采纳,获得10
11秒前
犹豫囧完成签到,获得积分10
11秒前
王火火关注了科研通微信公众号
12秒前
彭于晏应助啾咪采纳,获得10
13秒前
没心情A发布了新的文献求助10
13秒前
华仔应助爱摸鱼的胡萝卜采纳,获得10
13秒前
13秒前
chenli发布了新的文献求助10
14秒前
14秒前
努力哥发布了新的文献求助10
14秒前
传奇3应助学习采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5319745
求助须知:如何正确求助?哪些是违规求助? 4461682
关于积分的说明 13884225
捐赠科研通 4352426
什么是DOI,文献DOI怎么找? 2390560
邀请新用户注册赠送积分活动 1384341
关于科研通互助平台的介绍 1354051