已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SS-DETR: A Strong Sensing DETR Road Obstacle Detection Model Based on Camera Sensors for Autonomous Driving

障碍物 计算机科学 计算机视觉 遥感 环境科学 人工智能 地理 考古
作者
Xiaomei Li,Xiong Deng,Xiaoyong Wu,Zhijiang Xie
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ada4c8
摘要

Abstract As a key step in obstacle avoidance and path planning, obstacle detection via camera sensors is crucial for autonomous driving. The real traffic road environment is complex and variable, and the existing obstacle detection algorithms still have the problem of insufficient sensing ability. Therefore, this work suggests a camera sensors-based Strong Sensing DEtection TRansformer (SS-DETR) obstacle detection model for autonomous driving. Firstly, Receptive-Field Attention ResNet (RFARNet) is designed to improve feature analysis and extraction performance by considering the importance of receptive field spatial features and channels. Then, an intra-scale feature interaction (IFI) module based on multiple information fusion attention (MIFA) is created to strengthen the representation of advanced feature maps. Furthermore, the cross-scale feature-fusion module (CFM) is optimized to extract more detailed information from multi-scale feature maps. Finally, a localization loss function based on L1 and Powerful Intersection over Union (PIoU) v2 is implemented to further boost the detection performance. To verify the efficacy of the suggested model, the KITTI dataset containing camera sensors-based road obstacle images is adopted. The experimental results reveal that compared to Real-Time DETR (RT-DETR), SS-DETR improves mean Average Precision (mAP)@50:95 and mAP@50 by 2.4% and 1.9%, respectively, and has a real-time inference speed of 33.7 frames per second (FPS). To further confirm the generalization ability of the approach, experiments are conducted on the camera sensors-based Cityscapes dataset. The results divulge that the suggested strategy can effectively raise the detection accuracy of obstacles, and offer a fresh perspective on obstacle identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hulahula完成签到 ,获得积分10
1秒前
2秒前
BeBrave1028完成签到,获得积分10
3秒前
4秒前
5秒前
6秒前
飞逝的快乐时光完成签到 ,获得积分10
7秒前
xiangjun发布了新的文献求助30
7秒前
7秒前
土又鸟完成签到,获得积分10
8秒前
aldehyde应助summer采纳,获得10
9秒前
wanci应助mls采纳,获得10
10秒前
zyh完成签到,获得积分10
10秒前
cc发布了新的文献求助10
10秒前
笑点低的惊蛰完成签到,获得积分10
10秒前
GTRK完成签到 ,获得积分10
11秒前
呼啦呼啦完成签到 ,获得积分10
11秒前
挽星完成签到 ,获得积分10
11秒前
11秒前
discoveryTest发布了新的文献求助10
13秒前
上官若男应助1874采纳,获得10
14秒前
15秒前
16秒前
小龙完成签到,获得积分10
18秒前
专炸油条完成签到 ,获得积分10
19秒前
顾矜应助jingjing采纳,获得10
19秒前
22秒前
科研通AI2S应助ryf采纳,获得10
23秒前
suhang2024发布了新的文献求助30
25秒前
qq完成签到,获得积分10
27秒前
28秒前
追梦的小孩子完成签到,获得积分10
29秒前
852应助无聊的面包采纳,获得10
30秒前
qq发布了新的文献求助10
31秒前
李爱国应助胡芸芸采纳,获得10
31秒前
32秒前
5050完成签到 ,获得积分10
34秒前
陈家小乖发布了新的文献求助50
35秒前
Lucas应助企鹅没烦恼采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301037
求助须知:如何正确求助?哪些是违规求助? 4448772
关于积分的说明 13846907
捐赠科研通 4334604
什么是DOI,文献DOI怎么找? 2379757
邀请新用户注册赠送积分活动 1374823
关于科研通互助平台的介绍 1340622