SS-DETR: A Strong Sensing DETR Road Obstacle Detection Model Based on Camera Sensors for Autonomous Driving

障碍物 计算机科学 计算机视觉 遥感 环境科学 人工智能 地理 考古
作者
Xiaomei Li,Xiong Deng,Xiaoyong Wu,Zhijiang Xie
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ada4c8
摘要

Abstract As a key step in obstacle avoidance and path planning, obstacle detection via camera sensors is crucial for autonomous driving. The real traffic road environment is complex and variable, and the existing obstacle detection algorithms still have the problem of insufficient sensing ability. Therefore, this work suggests a camera sensors-based Strong Sensing DEtection TRansformer (SS-DETR) obstacle detection model for autonomous driving. Firstly, Receptive-Field Attention ResNet (RFARNet) is designed to improve feature analysis and extraction performance by considering the importance of receptive field spatial features and channels. Then, an intra-scale feature interaction (IFI) module based on multiple information fusion attention (MIFA) is created to strengthen the representation of advanced feature maps. Furthermore, the cross-scale feature-fusion module (CFM) is optimized to extract more detailed information from multi-scale feature maps. Finally, a localization loss function based on L1 and Powerful Intersection over Union (PIoU) v2 is implemented to further boost the detection performance. To verify the efficacy of the suggested model, the KITTI dataset containing camera sensors-based road obstacle images is adopted. The experimental results reveal that compared to Real-Time DETR (RT-DETR), SS-DETR improves mean Average Precision (mAP)@50:95 and mAP@50 by 2.4% and 1.9%, respectively, and has a real-time inference speed of 33.7 frames per second (FPS). To further confirm the generalization ability of the approach, experiments are conducted on the camera sensors-based Cityscapes dataset. The results divulge that the suggested strategy can effectively raise the detection accuracy of obstacles, and offer a fresh perspective on obstacle identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王子娇完成签到 ,获得积分10
刚刚
李爱国应助阳佟水蓉采纳,获得10
刚刚
孟令松关注了科研通微信公众号
刚刚
浮游应助醉逍遥采纳,获得10
1秒前
彪行天下发布了新的文献求助10
1秒前
虚幻的凤发布了新的文献求助10
1秒前
结实的冰露完成签到,获得积分10
3秒前
现代书雪发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助50
4秒前
4秒前
李健应助平常幼菱采纳,获得10
4秒前
妮宝完成签到,获得积分10
4秒前
Kevin完成签到,获得积分10
5秒前
背英语发布了新的文献求助10
6秒前
汉堡包应助科研兵采纳,获得10
6秒前
善学以致用应助淡淡一手采纳,获得10
7秒前
8秒前
lyrtim完成签到,获得积分20
9秒前
LIAN发布了新的文献求助80
9秒前
Hou完成签到,获得积分10
10秒前
11秒前
11秒前
13秒前
Majiko完成签到,获得积分10
16秒前
孟令松发布了新的文献求助10
16秒前
16秒前
搜集达人应助曾阿牛采纳,获得10
16秒前
16秒前
GPTea应助彳亍采纳,获得20
16秒前
量子星尘发布了新的文献求助10
16秒前
BoBo发布了新的文献求助10
17秒前
文静的匪完成签到 ,获得积分10
17秒前
王肖宁完成签到 ,获得积分10
20秒前
冲冲小将发布了新的文献求助20
21秒前
恰你眉目如昨完成签到 ,获得积分0
22秒前
平常幼菱发布了新的文献求助10
22秒前
24秒前
活力听白完成签到,获得积分10
24秒前
26秒前
三点发布了新的文献求助20
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4887640
求助须知:如何正确求助?哪些是违规求助? 4172488
关于积分的说明 12949193
捐赠科研通 3933203
什么是DOI,文献DOI怎么找? 2158144
邀请新用户注册赠送积分活动 1176528
关于科研通互助平台的介绍 1080791