SS-DETR: A Strong Sensing DETR Road Obstacle Detection Model Based on Camera Sensors for Autonomous Driving

障碍物 计算机科学 计算机视觉 遥感 环境科学 人工智能 地理 考古
作者
Xiaomei Li,Xiong Deng,Xiaoyong Wu,Zhijiang Xie
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ada4c8
摘要

Abstract As a key step in obstacle avoidance and path planning, obstacle detection via camera sensors is crucial for autonomous driving. The real traffic road environment is complex and variable, and the existing obstacle detection algorithms still have the problem of insufficient sensing ability. Therefore, this work suggests a camera sensors-based Strong Sensing DEtection TRansformer (SS-DETR) obstacle detection model for autonomous driving. Firstly, Receptive-Field Attention ResNet (RFARNet) is designed to improve feature analysis and extraction performance by considering the importance of receptive field spatial features and channels. Then, an intra-scale feature interaction (IFI) module based on multiple information fusion attention (MIFA) is created to strengthen the representation of advanced feature maps. Furthermore, the cross-scale feature-fusion module (CFM) is optimized to extract more detailed information from multi-scale feature maps. Finally, a localization loss function based on L1 and Powerful Intersection over Union (PIoU) v2 is implemented to further boost the detection performance. To verify the efficacy of the suggested model, the KITTI dataset containing camera sensors-based road obstacle images is adopted. The experimental results reveal that compared to Real-Time DETR (RT-DETR), SS-DETR improves mean Average Precision (mAP)@50:95 and mAP@50 by 2.4% and 1.9%, respectively, and has a real-time inference speed of 33.7 frames per second (FPS). To further confirm the generalization ability of the approach, experiments are conducted on the camera sensors-based Cityscapes dataset. The results divulge that the suggested strategy can effectively raise the detection accuracy of obstacles, and offer a fresh perspective on obstacle identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
L77完成签到,获得积分0
1秒前
dahong完成签到 ,获得积分10
1秒前
李健应助高梦采纳,获得20
2秒前
潘啊潘完成签到 ,获得积分10
3秒前
Lucas应助冷酷孤风采纳,获得10
3秒前
L77发布了新的文献求助10
4秒前
vivian发布了新的文献求助10
4秒前
5秒前
蓝天发布了新的文献求助10
6秒前
9秒前
Zhaoli发布了新的文献求助30
10秒前
善学以致用应助if采纳,获得10
11秒前
小宋完成签到,获得积分10
11秒前
12秒前
所所应助谦让的心锁采纳,获得10
12秒前
yun_hong发布了新的文献求助30
12秒前
银子吃好的完成签到,获得积分10
12秒前
今天不熬夜完成签到 ,获得积分10
13秒前
2029关注了科研通微信公众号
13秒前
14秒前
yellow完成签到 ,获得积分10
15秒前
科研通AI6应助蓝色采纳,获得10
15秒前
JxJ完成签到,获得积分10
15秒前
17秒前
科研通AI6应助1816013153采纳,获得100
17秒前
兔子发布了新的文献求助10
19秒前
19秒前
动听的荧完成签到 ,获得积分10
19秒前
求助人员完成签到,获得积分10
21秒前
馒头完成签到,获得积分10
21秒前
lani完成签到 ,获得积分10
23秒前
乃士完成签到,获得积分10
26秒前
壮观若南发布了新的文献求助10
26秒前
vivian发布了新的文献求助10
27秒前
27秒前
高大的迎梦完成签到,获得积分10
27秒前
晴空完成签到,获得积分10
29秒前
30秒前
漏漏漏发布了新的文献求助10
32秒前
xinxin完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565300
求助须知:如何正确求助?哪些是违规求助? 4650273
关于积分的说明 14690344
捐赠科研通 4592143
什么是DOI,文献DOI怎么找? 2519466
邀请新用户注册赠送积分活动 1491956
关于科研通互助平台的介绍 1463168