SS-DETR: A Strong Sensing DETR Road Obstacle Detection Model Based on Camera Sensors for Autonomous Driving

障碍物 计算机科学 计算机视觉 遥感 环境科学 人工智能 地理 考古
作者
Xiaomei Li,Xiong Deng,Xiaoyong Wu,Zhijiang Xie
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ada4c8
摘要

Abstract As a key step in obstacle avoidance and path planning, obstacle detection via camera sensors is crucial for autonomous driving. The real traffic road environment is complex and variable, and the existing obstacle detection algorithms still have the problem of insufficient sensing ability. Therefore, this work suggests a camera sensors-based Strong Sensing DEtection TRansformer (SS-DETR) obstacle detection model for autonomous driving. Firstly, Receptive-Field Attention ResNet (RFARNet) is designed to improve feature analysis and extraction performance by considering the importance of receptive field spatial features and channels. Then, an intra-scale feature interaction (IFI) module based on multiple information fusion attention (MIFA) is created to strengthen the representation of advanced feature maps. Furthermore, the cross-scale feature-fusion module (CFM) is optimized to extract more detailed information from multi-scale feature maps. Finally, a localization loss function based on L1 and Powerful Intersection over Union (PIoU) v2 is implemented to further boost the detection performance. To verify the efficacy of the suggested model, the KITTI dataset containing camera sensors-based road obstacle images is adopted. The experimental results reveal that compared to Real-Time DETR (RT-DETR), SS-DETR improves mean Average Precision (mAP)@50:95 and mAP@50 by 2.4% and 1.9%, respectively, and has a real-time inference speed of 33.7 frames per second (FPS). To further confirm the generalization ability of the approach, experiments are conducted on the camera sensors-based Cityscapes dataset. The results divulge that the suggested strategy can effectively raise the detection accuracy of obstacles, and offer a fresh perspective on obstacle identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助111采纳,获得10
刚刚
ryan发布了新的文献求助10
1秒前
蓝蓝娜娜完成签到,获得积分20
1秒前
1秒前
2秒前
xgn完成签到,获得积分10
2秒前
季生发布了新的文献求助10
2秒前
狐尔莫完成签到,获得积分10
2秒前
Owen应助nightmare采纳,获得10
2秒前
Di完成签到 ,获得积分10
4秒前
青梅煮酒完成签到,获得积分10
5秒前
6秒前
贤惠的又菡完成签到 ,获得积分10
7秒前
7秒前
yyliu应助蓝天采纳,获得10
8秒前
8秒前
MFNM完成签到,获得积分10
9秒前
xxxxxxxx发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
青梅煮酒发布了新的文献求助10
12秒前
天天快乐应助abc采纳,获得10
13秒前
机灵的幻灵完成签到 ,获得积分10
14秒前
斯文败类应助Pursuit采纳,获得10
14秒前
15秒前
15秒前
16秒前
坐以待币发布了新的文献求助10
16秒前
SCI发发发发布了新的文献求助10
16秒前
CC完成签到,获得积分10
17秒前
Augenstern发布了新的文献求助10
18秒前
啦啦啦完成签到,获得积分20
18秒前
19秒前
19秒前
科研通AI2S应助小云飘飘采纳,获得10
19秒前
QL发布了新的文献求助10
20秒前
平淡的翅膀完成签到 ,获得积分10
21秒前
在水一方应助小萝卜采纳,获得10
21秒前
领导范儿应助文静芸遥采纳,获得10
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310539
求助须知:如何正确求助?哪些是违规求助? 2943392
关于积分的说明 8514589
捐赠科研通 2618688
什么是DOI,文献DOI怎么找? 1431326
科研通“疑难数据库(出版商)”最低求助积分说明 664442
邀请新用户注册赠送积分活动 649626