SS-DETR: A Strong Sensing DETR Road Obstacle Detection Model Based on Camera Sensors for Autonomous Driving

障碍物 计算机科学 计算机视觉 遥感 环境科学 人工智能 地理 考古
作者
Xiaomei Li,Xiong Deng,Xiaoyong Wu,Zhijiang Xie
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ada4c8
摘要

Abstract As a key step in obstacle avoidance and path planning, obstacle detection via camera sensors is crucial for autonomous driving. The real traffic road environment is complex and variable, and the existing obstacle detection algorithms still have the problem of insufficient sensing ability. Therefore, this work suggests a camera sensors-based Strong Sensing DEtection TRansformer (SS-DETR) obstacle detection model for autonomous driving. Firstly, Receptive-Field Attention ResNet (RFARNet) is designed to improve feature analysis and extraction performance by considering the importance of receptive field spatial features and channels. Then, an intra-scale feature interaction (IFI) module based on multiple information fusion attention (MIFA) is created to strengthen the representation of advanced feature maps. Furthermore, the cross-scale feature-fusion module (CFM) is optimized to extract more detailed information from multi-scale feature maps. Finally, a localization loss function based on L1 and Powerful Intersection over Union (PIoU) v2 is implemented to further boost the detection performance. To verify the efficacy of the suggested model, the KITTI dataset containing camera sensors-based road obstacle images is adopted. The experimental results reveal that compared to Real-Time DETR (RT-DETR), SS-DETR improves mean Average Precision (mAP)@50:95 and mAP@50 by 2.4% and 1.9%, respectively, and has a real-time inference speed of 33.7 frames per second (FPS). To further confirm the generalization ability of the approach, experiments are conducted on the camera sensors-based Cityscapes dataset. The results divulge that the suggested strategy can effectively raise the detection accuracy of obstacles, and offer a fresh perspective on obstacle identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gyh发布了新的文献求助10
刚刚
刚刚
爆米花应助秋子采纳,获得10
刚刚
笨笨完成签到,获得积分20
刚刚
1秒前
飞猪完成签到,获得积分10
1秒前
陈淑玲完成签到,获得积分10
2秒前
定西发布了新的文献求助30
2秒前
灵巧鑫完成签到,获得积分20
2秒前
WxChen完成签到,获得积分10
3秒前
bkagyin应助地瓜叶采纳,获得30
3秒前
传奇3应助CIOOICO1采纳,获得10
3秒前
木木完成签到 ,获得积分10
5秒前
landewen完成签到 ,获得积分10
6秒前
小叶子发布了新的文献求助10
6秒前
harry完成签到,获得积分10
6秒前
6秒前
Singularity应助gyh采纳,获得10
8秒前
8秒前
多情的青曼完成签到,获得积分10
9秒前
温言叮叮铛完成签到,获得积分10
9秒前
10秒前
星辰大海应助自然紫山采纳,获得30
11秒前
zzzz发布了新的文献求助10
11秒前
原电池完成签到,获得积分10
11秒前
zhumingsijiu完成签到,获得积分10
11秒前
阳佟水蓉完成签到,获得积分10
11秒前
轩贝发布了新的文献求助20
11秒前
12秒前
12秒前
1111发布了新的文献求助10
12秒前
zhw完成签到,获得积分10
13秒前
小闵完成签到,获得积分10
14秒前
15秒前
所所应助沙漠大雕采纳,获得10
15秒前
hjhhjh完成签到,获得积分10
16秒前
文艺的曼柔完成签到 ,获得积分10
16秒前
JamesPei应助juneJ采纳,获得10
16秒前
尘闲完成签到,获得积分20
17秒前
Singularity应助gyh采纳,获得10
18秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842155
求助须知:如何正确求助?哪些是违规求助? 3384295
关于积分的说明 10533896
捐赠科研通 3104642
什么是DOI,文献DOI怎么找? 1709781
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 774029