MFD-UNet: a complex railway track boundary segmentation algorithm for drone vision based on multi-scale fusion and deformable pyramid blocks

计算机科学 人工智能 棱锥(几何) 分割 计算机视觉 残余物 航空影像 算法 模式识别(心理学) 数学 几何学
作者
Yanbin Weng,Huimin Xiang,Xiahu Chen,Changfan Zhang,Lin Jia,Feiyi Chen
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 016198-016198
标识
DOI:10.1088/1361-6501/ad9cae
摘要

Abstract Segmenting railway tracks from aerial imagery is critical in producing electronic railway maps. To address the challenges of railway track extraction from complex aerial imagery, this paper proposes an algorithm for complex railway track boundary segmentation Algorithm from complex aerial imagery based on MFD-UNet (Multi-scale attention Fusion and Deformable pyramid UNet). Firstly, we proposed a parallel deformable convolutional pyramid residual downsampling module. This module integrates deformable convolution with fixed convolution, dynamically adjusting the receptive field by learning offset values, and enhances the extraction of information at different scales by refining the residual blocks based on a pyramid structure. Secondly, a multi-scale attention fusion module is proposed in the skip connection part to integrate adjacent feature layers and reduce semantic differences. Additionally, a multi-layer optimized cross-entropy loss function is integrated into the decoder to enhance the model’s perception of information at various scales. Experimental results show that our algorithm can effectively segment railway tracks on both our self-built railway dataset and the Deep Globe dataset. Compared to the benchmark model, it has improved by 3.19% and 4.51% respectively, and the accuracy has also increased by 2.38% and 2.95%, achieving a good visual effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
困困困困发布了新的文献求助10
2秒前
小黄包子完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
4秒前
zaizai完成签到,获得积分10
4秒前
上官若男应助tuyfytjt采纳,获得10
4秒前
研友_Z60ObL完成签到,获得积分10
5秒前
小蘑菇应助欢呼尔烟采纳,获得10
5秒前
周宇飞发布了新的文献求助20
5秒前
败者食尘完成签到,获得积分10
6秒前
科目三应助nan采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
彭于晏应助mumu采纳,获得10
6秒前
李爱国应助Fareth采纳,获得10
7秒前
聪慧小霜应助zfcaabbcc采纳,获得10
7秒前
momo发布了新的文献求助10
7秒前
申左一发布了新的文献求助10
7秒前
ZYH发布了新的文献求助10
8秒前
KK发布了新的文献求助10
8秒前
斯文败类应助shusen采纳,获得10
8秒前
8秒前
lincool完成签到,获得积分10
9秒前
ldkl应助收手吧大哥采纳,获得30
9秒前
完美世界应助haoqisheng采纳,获得10
9秒前
小马甲应助郑zz采纳,获得10
10秒前
魔幻小蚂蚁完成签到,获得积分10
10秒前
10秒前
xzp发布了新的文献求助10
10秒前
YU关注了科研通微信公众号
10秒前
10秒前
cw发布了新的文献求助10
10秒前
10秒前
之之完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576354
求助须知:如何正确求助?哪些是违规求助? 3995613
关于积分的说明 12369373
捐赠科研通 3669547
什么是DOI,文献DOI怎么找? 2022294
邀请新用户注册赠送积分活动 1056342
科研通“疑难数据库(出版商)”最低求助积分说明 943562