计算机科学
转化式学习
领域(数学分析)
领域(数学)
资源(消歧)
知识库
领域特定语言
数据科学
人工智能
自然语言处理
软件工程
心理学
数学分析
教育学
计算机网络
数学
纯数学
作者
Chonghuan Zhang,Qianghua Lin,Biwei Zhu,Haopeng Yang,Xiao Lian,Hao Deng,Jiajun Zheng,Kuangbiao Liao
摘要
The field of natural language processing (NLP) has witnessed a transformative shift with the emergence of large language models (LLMs), revolutionizing various language tasks and applications, and the integration of LLMs into specialized domains enhances their capabilities for domain-specific applications. Notably, NLP has made significant strides in organic chemistry, particularly in predicting synthetic tasks, paving the way for the development of LLMs tailored to the organic chemistry field. In this work, we introduce SynAsk, a comprehensive organic chemistry domain-specific LLM platform developed by AIChemEco Inc. By fine-tuning an LLM with domain-specific data and integrating it with a chain of thought approach, SynAsk seamlessly accesses our knowledge base and advanced chemistry tools in a question-and-answer format. This includes functionalities such as a basic chemistry knowledge base, molecular information retrieval, reaction performance prediction, retrosynthesis prediction, chemical literature acquisition, and more. This novel methodology synergizes fine-tuning techniques with external resource integration, resulting in an organic chemistry-specific model poised to facilitate research and discovery in the field. Accessible at https://synask.aichemeco.com, SynAsk represents a significant advancement in leveraging NLP for synthetic applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI