Assessing biochar's impact on greenhouse gas emissions, microbial biomass, and enzyme activities in agricultural soils through meta-analysis and machine learning

生物炭 生物量(生态学) 土壤水分 温室气体 农业 环境科学 温室 农学 环境化学 环境保护 农林复合经营 化学 废物管理 土壤科学 生态学 生物 工程类 热解
作者
Jinze Bai,Bruno Rafael de Almeida Moreira,Yuxin Bai,Cresha Gracy Nadar,Yongzhong Feng,Sudhir Yadav
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:963: 178541-178541
标识
DOI:10.1016/j.scitotenv.2025.178541
摘要

The role of biochar in reducing greenhouse gas (GHG) emissions and improving soil health is a topic of extensive research, yet its effects remain debated. Conflicting evidence exists regarding biochar's impact on soil microbial-mediated emissions with respect to different GHGs. This study systematically examines these divergent perspectives, aiming to investigate biochar's influence on GHG emissions and soil health in agricultural soils. The meta-analysis includes 2594 paired observations from 157 studies conducted between 2000 and 2024. It was found that biochar increased the presence of amoA and nosZ genes by 39.4 % and 41.7 %, respectively, while reducing the abundance of the nirS gene by 17.8 %. This led to a 13.1 % decrease in N2O emissions. Nitrous emissions were positively associated with mean annual temperature and biochar's pyrolysis temperature and dosage while inversely related to soil pH, nitrogen fertilisation rate, and biochar pH and carbon content. Biochar also regulated enzyme activity related to the nutrient cycle and increased microbial biomass carbon, nitrogen, and phosphorus by 16.6 %, 23.9 %, and 50.2 %, respectively, leading to changes in microbial community diversity. These changes contributed to a reduction in CO2 and CH4 emissions, particularly when biochar and nitrogen fertiliser were applied at doses below 21.4 t ha-1 and 242.5 kg ha-1, as predicted by machine learning models. This study offers an overview of the positive impact of biochar amendments on soil GHG emissions mitigation. The key predictive factors identified could help optimise biochar production and targeted amendments, potentially improving soil health and achieving carbon neutrality in agroecosystems.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助qilavender采纳,获得10
1秒前
丘比特应助踏实的明雪采纳,获得10
1秒前
2秒前
纯真橘子完成签到,获得积分10
4秒前
4秒前
无花果应助灵巧大地采纳,获得10
5秒前
5秒前
大模型应助GYPP采纳,获得10
6秒前
aikeyan完成签到 ,获得积分10
7秒前
领导范儿应助书羽采纳,获得10
8秒前
DW发布了新的文献求助10
8秒前
yy完成签到,获得积分10
9秒前
hengyu举报wei求助涉嫌违规
10秒前
ZPH发布了新的文献求助10
11秒前
panjunlu完成签到,获得积分10
13秒前
14秒前
魁梧的灵寒完成签到,获得积分10
14秒前
14秒前
ms完成签到,获得积分20
15秒前
mingming发布了新的文献求助10
15秒前
15秒前
杳鸢应助Gao.采纳,获得10
16秒前
ch33t4h完成签到,获得积分10
17秒前
慕觅云发布了新的文献求助10
18秒前
骨筋中外发布了新的文献求助10
18秒前
书羽发布了新的文献求助10
19秒前
GYPP发布了新的文献求助10
20秒前
DW完成签到,获得积分20
20秒前
20秒前
22秒前
25秒前
皮皮皮咩完成签到,获得积分10
26秒前
bkagyin应助GYPP采纳,获得10
26秒前
hello发布了新的文献求助30
27秒前
27秒前
27秒前
ding应助lg采纳,获得30
29秒前
打打应助mingming采纳,获得10
30秒前
情怀应助Hehehe采纳,获得10
30秒前
皮皮皮咩发布了新的文献求助30
31秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387472
求助须知:如何正确求助?哪些是违规求助? 3000244
关于积分的说明 8790029
捐赠科研通 2686174
什么是DOI,文献DOI怎么找? 1471475
科研通“疑难数据库(出版商)”最低求助积分说明 680307
邀请新用户注册赠送积分活动 673072