Ultrafast Lithium‐Ion Transport Engineered by Nanoconfinement Effect

电解质 材料科学 碳酸乙烯酯 电导率 锂(药物) 离子电导率 石墨烯 电化学 离子液体 离子 化学工程 扩散 纳米技术 化学物理 无机化学 电极 化学 物理化学 热力学 有机化学 医学 物理 内分泌学 工程类 催化作用
作者
Yahan Yang,Zefeng Li,Zhilin Yang,Qiannan Zhang,Qian Chen,Jiao Yuying,Zixuan Wang,Xiaokun Zhang,Pengbo Zhai,Zhimei Sun,Yong Xiang,Yongji Gong
出处
期刊:Advanced Materials [Wiley]
标识
DOI:10.1002/adma.202416266
摘要

Abstract Amid the burgeoning demand for electrochemical energy storage and neuromorphic computing, fast ion transport behavior has attracted widespread attention at both fundamental and practical levels. Here, based on the nanoconfined channel of graphene oxide laminar membranes (GOLMs), the lithium ionic conductivity typically exceeding 10 2 mS cm −1 is realized, one to three orders of magnitude higher than traditional liquid or solid lithium‐ion electrolyte. Specifically, the nanoconfined lithium hexafluorophosphate (LiPF 6 )‐ethylene carbonate (EC)/ dimethyl carbonate (DMC) electrolyte demonstrates the ionic conductivity of 170 mS cm −1 , outperforming the bulk counterpart by ≈16 fold. At the ultralow temperature of −60 °C, the nanoconfined electrolyte also maintains a practically useful conductivity of 11 mS cm −1 . Furthermore, the in situ experimental and theoretical framework enables to attribute the enhanced ionic conductivity to the layer‐by‐layer cations and anions distribution induced by high surface charge and nanoconfinement effects in GO nanochannels. More importantly, integrating such rapid lithium‐ion transport nanochannel into the LiFePO 4 (LFP) cathode significantly improves the high‐rate and long‐cycle performance of lithium batteries. These results exhibit the convention‐breaking ionic conductivity of nanoconfined electrolytes, inspiring the development of ultrafast ion diffusion pathways based on 2D nanoconfined channels for efficient energy storage applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Accepted完成签到,获得积分10
刚刚
辞树完成签到,获得积分10
刚刚
柚子皮完成签到,获得积分10
刚刚
慕青应助大美女采纳,获得10
2秒前
3秒前
terrell完成签到,获得积分10
4秒前
Inter09完成签到,获得积分10
4秒前
乐乐应助lilyyun1990采纳,获得10
5秒前
记忆完成签到,获得积分10
5秒前
Yi完成签到 ,获得积分10
5秒前
supertkeb完成签到,获得积分10
6秒前
李健应助含蓄元冬采纳,获得10
7秒前
8秒前
RBT完成签到,获得积分10
8秒前
Yoki完成签到 ,获得积分10
9秒前
称心如意完成签到 ,获得积分10
9秒前
9秒前
9秒前
美丽的依霜完成签到 ,获得积分10
10秒前
simiger发布了新的文献求助10
10秒前
kk驳回了烟花应助
10秒前
蓝色的云完成签到,获得积分10
11秒前
zero完成签到,获得积分10
11秒前
坦率幻波完成签到,获得积分10
11秒前
11秒前
RBT发布了新的文献求助10
12秒前
sb完成签到,获得积分10
12秒前
huanfid完成签到 ,获得积分10
12秒前
学术咸鱼发布了新的文献求助10
13秒前
玥来玥好发布了新的文献求助10
13秒前
Ha完成签到,获得积分10
14秒前
协和_子鱼完成签到,获得积分0
15秒前
纯真寄文完成签到 ,获得积分10
15秒前
左丘以云完成签到,获得积分0
15秒前
ttt发布了新的文献求助10
16秒前
动人的诗霜完成签到 ,获得积分10
16秒前
Liang完成签到 ,获得积分10
16秒前
16秒前
蒋时晏完成签到,获得积分0
16秒前
追寻的语柔完成签到,获得积分10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311429
求助须知:如何正确求助?哪些是违规求助? 2944201
关于积分的说明 8517847
捐赠科研通 2619545
什么是DOI,文献DOI怎么找? 1432421
科研通“疑难数据库(出版商)”最低求助积分说明 664655
邀请新用户注册赠送积分活动 649869