阳极
碳纤维
材料科学
化学工程
生物量(生态学)
储能
钠
纳米技术
化学
复合材料
电极
冶金
海洋学
物理
地质学
工程类
复合数
物理化学
功率(物理)
量子力学
作者
Lianghao Yu,Linlin Zhang,Xuedong He,Xin Tao,Guangzhen Zhao,Haoliang Xie,Ruilin Zhu,Guang Zhu
标识
DOI:10.1016/j.indcrop.2023.117805
摘要
The pursuit of affordable anode materials for sodium-ion batteries (SIBs) has become imperative in light of the rising energy demand in modern society. Hard carbon (HC), a highly promising candidate for SIBs, has garnered interest among researchers. In this study, we present a novel approach involving the thermal treatment of low-cost puffball (PB) at various temperatures to produce cost-effective porous carbon, which holds great potential as an anode material for SIBs. The carbon derived from the treated puffball biomass showcases distinctive morphological features, including carbon tubes and plentiful balloon-like porous structures. This morphological structure can prevent the agglomeration and stacking of carbon materials, which can effectively increase the active sites and energy storage channels. The resulting puffball biomass-derived carbon exhibits a reversible capacity of 205.05 mAh g−1 at 100 mA g−1. Even after 600 cycles at a current density of 2 A g−1, the discharge capacity remains as high as 146.98 mAh g−1. These findings emphasize the remarkable performance and cycling stability of the carbon material. Significantly, the puffball biomass-derived carbon exhibited an impressive initial Coulomb efficiency of 57.6%, which is a noteworthy achievement. Moreover, we employed in situ XRD to investigate its energy storage mechanism in sodium-ion batteries. When integrated into a complete cell with Na3V2(PO4)3 (NVP) and bulking materials, the carbon anode exhibited impressive multiplicative performance and maintained good cycling stability. These findings not only provide new insights into the design of carbon anodes for sodium-ion batteries but also emphasize their exceptional attributes such as excellent initial coulombic efficiency, impressive rate capability, and cost-effectiveness for sodium storage.
科研通智能强力驱动
Strongly Powered by AbleSci AI