A survey on few-shot class-incremental learning

计算机科学 人工智能 机器学习 过度拟合 遗忘 深度学习 领域(数学) 透视图(图形) 特征(语言学) 分类 人工神经网络 哲学 语言学 数学 纯数学
作者
Songsong Tian,Lusi Li,Weijun Li,Hang Ran,Xin Ning,Prayag Tiwari
出处
期刊:Neural Networks [Elsevier]
卷期号:169: 307-324 被引量:41
标识
DOI:10.1016/j.neunet.2023.10.039
摘要

Large deep learning models are impressive, but they struggle when real-time data is not available. Few-shot class-incremental learning (FSCIL) poses a significant challenge for deep neural networks to learn new tasks from just a few labeled samples without forgetting the previously learned ones. This setup can easily leads to catastrophic forgetting and overfitting problems, severely affecting model performance. Studying FSCIL helps overcome deep learning model limitations on data volume and acquisition time, while improving practicality and adaptability of machine learning models. This paper provides a comprehensive survey on FSCIL. Unlike previous surveys, we aim to synthesize few-shot learning and incremental learning, focusing on introducing FSCIL from two perspectives, while reviewing over 30 theoretical research studies and more than 20 applied research studies. From the theoretical perspective, we provide a novel categorization approach that divides the field into five subcategories, including traditional machine learning methods, meta learning-based methods, feature and feature space-based methods, replay-based methods, and dynamic network structure-based methods. We also evaluate the performance of recent theoretical research on benchmark datasets of FSCIL. From the application perspective, FSCIL has achieved impressive achievements in various fields of computer vision such as image classification, object detection, and image segmentation, as well as in natural language processing and graph. We summarize the important applications. Finally, we point out potential future research directions, including applications, problem setups, and theory development. Overall, this paper offers a comprehensive analysis of the latest advances in FSCIL from a methodological, performance, and application perspective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
澜汐发布了新的文献求助10
刚刚
刚刚
苗子发布了新的文献求助10
刚刚
2秒前
橘色天际线完成签到,获得积分10
2秒前
2秒前
CAS完成签到,获得积分10
2秒前
Yan完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
冷傲天川完成签到,获得积分10
3秒前
4秒前
不安的采白完成签到,获得积分10
4秒前
烟花应助源缘采纳,获得10
4秒前
5秒前
6秒前
6秒前
6秒前
李爱国应助ZY采纳,获得10
6秒前
不懈奋进应助哇哇哇哇采纳,获得30
6秒前
小瓶子完成签到,获得积分10
7秒前
wxj发布了新的文献求助10
8秒前
雪糕发布了新的文献求助10
8秒前
酷波er应助圈儿采纳,获得10
9秒前
kkk小饼干发布了新的文献求助10
9秒前
9秒前
情怀应助Qinghua采纳,获得10
10秒前
WxChen完成签到,获得积分10
10秒前
吴陈发布了新的文献求助10
12秒前
12秒前
清秋发布了新的文献求助10
12秒前
12秒前
所所应助yuan采纳,获得10
13秒前
14秒前
充电宝应助WxChen采纳,获得10
14秒前
万能图书馆应助猪猪hero采纳,获得10
14秒前
情怀应助WxChen采纳,获得10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3547087
求助须知:如何正确求助?哪些是违规求助? 3124191
关于积分的说明 9358008
捐赠科研通 2822719
什么是DOI,文献DOI怎么找? 1551643
邀请新用户注册赠送积分活动 723580
科研通“疑难数据库(出版商)”最低求助积分说明 713825