Metal oxide- and metal-loaded mesoporous carbon for practical high-performance Li-ion battery anodes

材料科学 阳极 纳米材料 氧化物 纳米复合材料 电池(电) 法拉第效率 介孔材料 石墨 金属 纳米技术 纳米颗粒 氧化锡 电极 化学工程 复合材料 冶金 催化作用 化学 功率(物理) 物理化学 工程类 物理 量子力学 生物化学
作者
Ayman A. AbdelHamid,Adriana Mendoza‐Garcia,Su Seong Lee,Jackie Y. Ying
出处
期刊:Nano Energy [Elsevier]
卷期号:119: 109025-109025 被引量:1
标识
DOI:10.1016/j.nanoen.2023.109025
摘要

The rapidly expanding Li-ion battery market needs new materials that can satisfy the increasing energy storage demand. Metal oxides and some metals such as tin are viable alternatives to graphite as Li-ion battery anodes, but their low conductivity and large volume change during cycling impose severe challenges that need to be overcome. Confinement of metal oxide and metal nanomaterials within mesoporous carbon (MC) is an effective strategy in this regard, but complex synthesis and nanoparticle aggregation have hindered its application. Herein, we report a facile, scalable and generalized methodology for the room-temperature synthesis of metal oxide and metal nanoparticles within a MC host. The approach has been successfully applied to achieve uniform distribution and prevent aggregation of a large variety of metal oxide and metal nanomaterials in MC support. These nanocomposites were screened as Li-ion battery anodes, and the optimal candidates were shown to be superior to previously reported systems. Our synthesis method was scaled up using commercial MC. The nanocomposites were validated in a high-loading electrode (4 mg/cm2) with a practical voltage range (< 2 V vs. Li+/Li), impressive initial Coulombic efficiency (> 100%), and excellent stability (~ 500 mAh/g after 250 cycles at 0.2 A/g), which was 1.5–2x better than commercial graphite at the same testing conditions. The facile nature, universality and versatility of our approach make it possible to load various metal oxide and metal nanomaterials within different types of MC. These nanocomposites would be of significant interest to different fields, such as energy storage and conversion, sensing, and catalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ahha发布了新的文献求助10
1秒前
捞月亮渔民关注了科研通微信公众号
1秒前
2秒前
纯真的诗兰完成签到,获得积分10
3秒前
Q123ba叭发布了新的文献求助10
3秒前
发呆的小号完成签到 ,获得积分0
4秒前
东asdfghjkl发布了新的文献求助30
6秒前
Patrick完成签到,获得积分10
7秒前
默默的聪展完成签到,获得积分10
9秒前
小马甲应助ug采纳,获得10
11秒前
雨洋完成签到,获得积分10
11秒前
老薛发布了新的文献求助10
12秒前
朱逸梦应助小星星采纳,获得10
13秒前
慕青应助qhy123采纳,获得10
20秒前
22秒前
共享精神应助奇怪人类采纳,获得10
22秒前
能HJY发布了新的文献求助10
29秒前
小马甲应助星星采纳,获得10
30秒前
所所应助Q123ba叭采纳,获得10
31秒前
woxue完成签到,获得积分10
32秒前
Lin发布了新的文献求助10
33秒前
jinyu发布了新的文献求助10
33秒前
传统的若烟完成签到,获得积分10
34秒前
烟花应助里里采纳,获得10
34秒前
天涯完成签到 ,获得积分10
34秒前
鹿天完成签到 ,获得积分10
34秒前
薰硝壤应助小星星采纳,获得10
35秒前
jingjing-8995完成签到,获得积分10
36秒前
脑洞疼应助小吴同志采纳,获得10
36秒前
manchang完成签到 ,获得积分10
36秒前
沈吃俭用关注了科研通微信公众号
37秒前
Hou_jiaqi完成签到,获得积分10
39秒前
39秒前
39秒前
40秒前
里里完成签到,获得积分10
40秒前
顺顺尼完成签到,获得积分10
40秒前
梁老师的文献完成签到,获得积分10
41秒前
yii完成签到 ,获得积分10
41秒前
乐乐应助fldud0采纳,获得10
42秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137360
求助须知:如何正确求助?哪些是违规求助? 2788429
关于积分的说明 7786365
捐赠科研通 2444582
什么是DOI,文献DOI怎么找? 1300002
科研通“疑难数据库(出版商)”最低求助积分说明 625695
版权声明 601023