Improved electric-thermal-aging multi-physics domain coupling modeling and identification decoupling of complex kinetic processes based on timescale quantification in lithium-ion batteries

解耦(概率) 控制理论(社会学) 观察员(物理) 电池(电) 系统标识 联轴节(管道) 动能 热的 电压 时域 非线性系统 荷电状态 计算机科学 控制工程 物理 工程类 功率(物理) 热力学 机械工程 控制(管理) 电气工程 数据建模 量子力学 人工智能 数据库 计算机视觉
作者
Haotian Shi,Shunli Wang,Qi Huang,Carlos Fernández,Jianhong Liang,Mengyun Zhang,Chuangshi Qi,Liping Wang
出处
期刊:Applied Energy [Elsevier]
卷期号:353: 122174-122174 被引量:9
标识
DOI:10.1016/j.apenergy.2023.122174
摘要

Unraveling the kinetic behavior inside the battery is essential to break through the limitations of mechanistic studies and to optimize the control of the integrated management system. Given this fact that the battery system is multi-domain coupled and highly nonlinear, an improved lumped parameter multi-physical domain coupling model is first developed to capture the electrical, thermal and aging characteristics of the battery in this paper. On this basis, an adaptive multi-timescale decoupled identification and estimation strategy is proposed based on the quantified timescale innovation, which realizes the online monitoring of the battery state and the accurate identification of the model parameters. The specific idea is that the decoupled identification of kinetic parameters inside the cell, the terminal voltage prediction and the real-time monitoring of the internal temperature with the online estimation of the available capacity are distinguished under different timescales. Meanwhile, the response time characteristic of the different kinetics is extracted and analyzed as a distinction between the coupled internal electrochemical processes. In this idea, four functionally different sub-observers are developed independently. Significantly, adaptive time-scale driven methods designed based on the fundamental timescale of the system, the amount of variation of the state of charge, and the amount of transfer charge are used separately for the observer implementation at different timescales. In addition, the coupling of the fast and slow kinetic parameter discriminators is achieved by diffusion voltage, and the internal temperature observer as well as the available capacity observer are coupled to each other based on the estimation results. Experimental results for two long-time operating conditions at 5, 25 and 45 °C show that the proposed strategy has fast convergence and reliable accuracy in monitoring the battery state characteristics. Compared with the traditional fixed timescale algorithm, the proposed multi-physics domain coupling modeling strategy based on independent timescale driven design is more competitive in practical embedded applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
h哈完成签到,获得积分10
刚刚
思源应助饱满的毛巾采纳,获得10
1秒前
1秒前
深情安青应助hhh采纳,获得10
1秒前
小二郎应助Omelette采纳,获得10
1秒前
asdfzxcv应助避橙采纳,获得10
1秒前
1秒前
顾乐乐完成签到,获得积分10
1秒前
galaa发布了新的文献求助10
2秒前
2秒前
Mm林完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
3秒前
科研通AI6应助子凯采纳,获得10
4秒前
4秒前
dusum完成签到,获得积分10
4秒前
mengzhao发布了新的文献求助10
6秒前
6秒前
6秒前
折枝念晚宁完成签到,获得积分10
6秒前
哟呵大鱼完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
thia发布了新的文献求助10
7秒前
7秒前
文献dog发布了新的文献求助10
8秒前
高兴宝贝完成签到 ,获得积分10
8秒前
cheng123完成签到,获得积分10
8秒前
lxp发布了新的文献求助10
8秒前
吴军霄完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
LJY发布了新的文献求助10
9秒前
科研通AI6应助薄荷采纳,获得10
9秒前
梦XING发布了新的文献求助10
10秒前
刘雨桐完成签到,获得积分10
10秒前
ding应助Camille采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666928
求助须知:如何正确求助?哪些是违规求助? 4883518
关于积分的说明 15118330
捐赠科研通 4825864
什么是DOI,文献DOI怎么找? 2583597
邀请新用户注册赠送积分活动 1537760
关于科研通互助平台的介绍 1495956