AdvMIL: Adversarial multiple instance learning for the survival analysis on whole-slide images

人工智能 计算机科学 机器学习 稳健性(进化) 深度学习 对抗制 监督学习 半监督学习 事件(粒子物理) 人工神经网络 生物化学 化学 物理 量子力学 基因
作者
Pei Liu,Luping Ji,Feng Ye,Bo Fu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:91: 103020-103020 被引量:18
标识
DOI:10.1016/j.media.2023.103020
摘要

The survival analysis on histological whole-slide images (WSIs) is one of the most important means to estimate patient prognosis. Although many weakly-supervised deep learning models have been developed for gigapixel WSIs, their potential is generally restricted by classical survival analysis rules and fully-supervised learning requirements. As a result, these models provide patients only with a completely-certain point estimation of time-to-event, and they could only learn from the labeled WSI data currently at a small scale. To tackle these problems, we propose a novel adversarial multiple instance learning (AdvMIL) framework. This framework is based on adversarial time-to-event modeling, and integrates the multiple instance learning (MIL) that is much necessary for WSI representation learning. It is a plug-and-play one, so that most existing MIL-based end-to-end methods can be easily upgraded by applying this framework, gaining the improved abilities of survival distribution estimation and semi-supervised learning. Our extensive experiments show that AdvMIL not only could often bring performance improvement to mainstream WSI survival analysis methods at a relatively low computational cost, but also enables these methods to effectively utilize unlabeled data via semi-supervised learning. Moreover, it is observed that AdvMIL could help improving the robustness of models against patch occlusion and two representative image noises. The proposed AdvMIL framework could promote the research of survival analysis in computational pathology with its novel adversarial MIL paradigm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
112233发布了新的文献求助10
刚刚
Jasper应助Angora采纳,获得10
1秒前
1秒前
Gyz完成签到,获得积分10
1秒前
核桃发布了新的文献求助10
2秒前
2秒前
Nov完成签到,获得积分10
3秒前
语物完成签到,获得积分10
3秒前
vidi发布了新的文献求助10
3秒前
zhang发布了新的文献求助10
3秒前
殷勤的紫槐应助CCrain采纳,获得200
4秒前
酷酷山柳完成签到,获得积分10
4秒前
4秒前
5秒前
奋斗的夏柳完成签到 ,获得积分10
5秒前
基根豹完成签到,获得积分10
5秒前
instanc通发布了新的文献求助10
5秒前
5秒前
Lorayacarat发布了新的文献求助10
6秒前
WQ发布了新的文献求助10
6秒前
6秒前
7秒前
13211发布了新的文献求助10
8秒前
晓薇完成签到,获得积分10
9秒前
基根豹发布了新的文献求助10
9秒前
hiding完成签到,获得积分10
9秒前
Nov发布了新的文献求助10
9秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
六月歌者发布了新的文献求助10
11秒前
缪缪发布了新的文献求助10
11秒前
NXK发布了新的文献求助10
11秒前
浮游应助阿泽采纳,获得10
12秒前
13秒前
高震博完成签到 ,获得积分10
13秒前
星辰大海应助兴奋的菠萝采纳,获得10
15秒前
念冰初融完成签到,获得积分20
15秒前
小王小王完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637437
求助须知:如何正确求助?哪些是违规求助? 4743337
关于积分的说明 14999087
捐赠科研通 4795612
什么是DOI,文献DOI怎么找? 2562091
邀请新用户注册赠送积分活动 1521554
关于科研通互助平台的介绍 1481559