AdvMIL: Adversarial multiple instance learning for the survival analysis on whole-slide images

人工智能 计算机科学 机器学习 稳健性(进化) 深度学习 对抗制 监督学习 半监督学习 事件(粒子物理) 人工神经网络 生物化学 量子力学 基因 物理 化学
作者
Pei Liu,Luping Ji,Feng Ye,Bo Fu
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:91: 103020-103020 被引量:18
标识
DOI:10.1016/j.media.2023.103020
摘要

The survival analysis on histological whole-slide images (WSIs) is one of the most important means to estimate patient prognosis. Although many weakly-supervised deep learning models have been developed for gigapixel WSIs, their potential is generally restricted by classical survival analysis rules and fully-supervised learning requirements. As a result, these models provide patients only with a completely-certain point estimation of time-to-event, and they could only learn from the labeled WSI data currently at a small scale. To tackle these problems, we propose a novel adversarial multiple instance learning (AdvMIL) framework. This framework is based on adversarial time-to-event modeling, and integrates the multiple instance learning (MIL) that is much necessary for WSI representation learning. It is a plug-and-play one, so that most existing MIL-based end-to-end methods can be easily upgraded by applying this framework, gaining the improved abilities of survival distribution estimation and semi-supervised learning. Our extensive experiments show that AdvMIL not only could often bring performance improvement to mainstream WSI survival analysis methods at a relatively low computational cost, but also enables these methods to effectively utilize unlabeled data via semi-supervised learning. Moreover, it is observed that AdvMIL could help improving the robustness of models against patch occlusion and two representative image noises. The proposed AdvMIL framework could promote the research of survival analysis in computational pathology with its novel adversarial MIL paradigm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
_hyl完成签到,获得积分10
刚刚
1秒前
勤劳滑板发布了新的文献求助10
1秒前
Kevin发布了新的文献求助10
1秒前
柔柔发布了新的文献求助10
2秒前
4秒前
Haicheng完成签到,获得积分10
4秒前
fmx完成签到,获得积分10
5秒前
Akim应助唔西迪西采纳,获得10
5秒前
6秒前
7秒前
8秒前
慕青应助林小不脏采纳,获得10
9秒前
KLM完成签到,获得积分20
11秒前
典雅又夏完成签到,获得积分10
13秒前
斯文败类应助吃吃采纳,获得10
13秒前
伶俐的海瑶完成签到 ,获得积分10
13秒前
氿囶发布了新的文献求助10
14秒前
Kevin关注了科研通微信公众号
14秒前
qq发布了新的文献求助10
14秒前
ylq完成签到,获得积分10
14秒前
YIFGU完成签到 ,获得积分10
14秒前
Orange应助wmmm采纳,获得10
14秒前
垃圾二硫自组装纳米粒完成签到,获得积分10
15秒前
15秒前
Rondab应助庸人自扰采纳,获得10
15秒前
_hyl发布了新的文献求助10
18秒前
活泼小蜜蜂完成签到,获得积分10
18秒前
吃吃完成签到,获得积分20
18秒前
19秒前
pyh发布了新的文献求助10
19秒前
20秒前
20秒前
20秒前
chen0815完成签到,获得积分10
20秒前
俊秀的念烟完成签到,获得积分10
20秒前
21秒前
xzy998应助niania采纳,获得10
21秒前
樊书南发布了新的文献求助10
23秒前
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991903
求助须知:如何正确求助?哪些是违规求助? 3533047
关于积分的说明 11260505
捐赠科研通 3272347
什么是DOI,文献DOI怎么找? 1805732
邀请新用户注册赠送积分活动 882637
科研通“疑难数据库(出版商)”最低求助积分说明 809425