AdvMIL: Adversarial multiple instance learning for the survival analysis on whole-slide images

人工智能 计算机科学 机器学习 稳健性(进化) 深度学习 对抗制 监督学习 半监督学习 事件(粒子物理) 人工神经网络 生物化学 化学 物理 量子力学 基因
作者
Pei Liu,Luping Ji,Feng Ye,Bo Fu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:91: 103020-103020 被引量:8
标识
DOI:10.1016/j.media.2023.103020
摘要

The survival analysis on histological whole-slide images (WSIs) is one of the most important means to estimate patient prognosis. Although many weakly-supervised deep learning models have been developed for gigapixel WSIs, their potential is generally restricted by classical survival analysis rules and fully-supervised learning requirements. As a result, these models provide patients only with a completely-certain point estimation of time-to-event, and they could only learn from the labeled WSI data currently at a small scale. To tackle these problems, we propose a novel adversarial multiple instance learning (AdvMIL) framework. This framework is based on adversarial time-to-event modeling, and integrates the multiple instance learning (MIL) that is much necessary for WSI representation learning. It is a plug-and-play one, so that most existing MIL-based end-to-end methods can be easily upgraded by applying this framework, gaining the improved abilities of survival distribution estimation and semi-supervised learning. Our extensive experiments show that AdvMIL not only could often bring performance improvement to mainstream WSI survival analysis methods at a relatively low computational cost, but also enables these methods to effectively utilize unlabeled data via semi-supervised learning. Moreover, it is observed that AdvMIL could help improving the robustness of models against patch occlusion and two representative image noises. The proposed AdvMIL framework could promote the research of survival analysis in computational pathology with its novel adversarial MIL paradigm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
loong发布了新的文献求助10
3秒前
7秒前
7秒前
超级的绿凝完成签到 ,获得积分10
7秒前
小马甲应助可乐采纳,获得10
7秒前
小鱼呆呆脑完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
lunar发布了新的文献求助10
11秒前
llt发布了新的文献求助10
11秒前
魔力巴啦啦完成签到 ,获得积分10
11秒前
yuwan发布了新的文献求助10
13秒前
Alicia完成签到,获得积分10
14秒前
15秒前
一轮明月完成签到 ,获得积分10
17秒前
xiaoyu11112发布了新的文献求助10
18秒前
科研通AI2S应助oops采纳,获得10
20秒前
风中晓露发布了新的文献求助10
21秒前
Hello应助酶没美镁采纳,获得10
21秒前
21秒前
可乐发布了新的文献求助10
21秒前
轩羊羊完成签到 ,获得积分10
22秒前
lynn完成签到 ,获得积分10
22秒前
可爱的函函应助XYZ采纳,获得10
25秒前
害怕的梦凡完成签到,获得积分10
25秒前
25秒前
lyj334发布了新的文献求助10
26秒前
球球完成签到,获得积分10
27秒前
28秒前
veen完成签到 ,获得积分10
29秒前
30秒前
芒果豆豆完成签到,获得积分20
31秒前
pentayouth完成签到,获得积分10
31秒前
派总完成签到,获得积分10
34秒前
芒果豆豆发布了新的文献求助20
34秒前
35秒前
Z-先森完成签到,获得积分10
37秒前
37秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165336
求助须知:如何正确求助?哪些是违规求助? 2816343
关于积分的说明 7912340
捐赠科研通 2475963
什么是DOI,文献DOI怎么找? 1318480
科研通“疑难数据库(出版商)”最低求助积分说明 632171
版权声明 602388