AdvMIL: Adversarial multiple instance learning for the survival analysis on whole-slide images

人工智能 计算机科学 机器学习 稳健性(进化) 深度学习 对抗制 监督学习 半监督学习 事件(粒子物理) 人工神经网络 生物化学 化学 物理 量子力学 基因
作者
Pei Liu,Luping Ji,Feng Ye,Bo Fu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:91: 103020-103020 被引量:18
标识
DOI:10.1016/j.media.2023.103020
摘要

The survival analysis on histological whole-slide images (WSIs) is one of the most important means to estimate patient prognosis. Although many weakly-supervised deep learning models have been developed for gigapixel WSIs, their potential is generally restricted by classical survival analysis rules and fully-supervised learning requirements. As a result, these models provide patients only with a completely-certain point estimation of time-to-event, and they could only learn from the labeled WSI data currently at a small scale. To tackle these problems, we propose a novel adversarial multiple instance learning (AdvMIL) framework. This framework is based on adversarial time-to-event modeling, and integrates the multiple instance learning (MIL) that is much necessary for WSI representation learning. It is a plug-and-play one, so that most existing MIL-based end-to-end methods can be easily upgraded by applying this framework, gaining the improved abilities of survival distribution estimation and semi-supervised learning. Our extensive experiments show that AdvMIL not only could often bring performance improvement to mainstream WSI survival analysis methods at a relatively low computational cost, but also enables these methods to effectively utilize unlabeled data via semi-supervised learning. Moreover, it is observed that AdvMIL could help improving the robustness of models against patch occlusion and two representative image noises. The proposed AdvMIL framework could promote the research of survival analysis in computational pathology with its novel adversarial MIL paradigm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助scuter采纳,获得10
1秒前
思源应助Genius采纳,获得10
1秒前
啵啵龙完成签到,获得积分10
2秒前
3秒前
酷波er应助HUYAOWEI采纳,获得10
4秒前
乐乐应助HUYAOWEI采纳,获得10
4秒前
大个应助HUYAOWEI采纳,获得10
4秒前
科研通AI6应助HUYAOWEI采纳,获得10
4秒前
小二郎应助HUYAOWEI采纳,获得10
4秒前
深情安青应助HUYAOWEI采纳,获得10
4秒前
科研通AI2S应助HUYAOWEI采纳,获得10
4秒前
SciGPT应助HUYAOWEI采纳,获得10
4秒前
小蘑菇应助HUYAOWEI采纳,获得10
4秒前
wxyshare应助HUYAOWEI采纳,获得20
4秒前
zzzzzzzzzzzz完成签到,获得积分10
4秒前
爆爆完成签到,获得积分10
5秒前
5秒前
可爱藏今发布了新的文献求助10
5秒前
Sy发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
开朗楼房完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
zzxr完成签到,获得积分10
9秒前
濛嘻嘻发布了新的文献求助10
9秒前
12秒前
12秒前
13秒前
14秒前
15秒前
香蕉觅云应助小蚂蚁采纳,获得10
16秒前
louis dai完成签到,获得积分10
16秒前
orixero应助儒雅的忆翠采纳,获得10
17秒前
Lucas应助疯狂的大闸蟹采纳,获得10
17秒前
17秒前
infinite完成签到,获得积分10
18秒前
隐形曼青应助义气的擎汉采纳,获得10
18秒前
damianjoker11完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594302
求助须知:如何正确求助?哪些是违规求助? 4679974
关于积分的说明 14812661
捐赠科研通 4646837
什么是DOI,文献DOI怎么找? 2534882
邀请新用户注册赠送积分活动 1502862
关于科研通互助平台的介绍 1469497