AdvMIL: Adversarial multiple instance learning for the survival analysis on whole-slide images

人工智能 计算机科学 机器学习 稳健性(进化) 深度学习 对抗制 监督学习 半监督学习 事件(粒子物理) 人工神经网络 生物化学 化学 物理 量子力学 基因
作者
Pei Liu,Luping Ji,Feng Ye,Bo Fu
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:91: 103020-103020 被引量:18
标识
DOI:10.1016/j.media.2023.103020
摘要

The survival analysis on histological whole-slide images (WSIs) is one of the most important means to estimate patient prognosis. Although many weakly-supervised deep learning models have been developed for gigapixel WSIs, their potential is generally restricted by classical survival analysis rules and fully-supervised learning requirements. As a result, these models provide patients only with a completely-certain point estimation of time-to-event, and they could only learn from the labeled WSI data currently at a small scale. To tackle these problems, we propose a novel adversarial multiple instance learning (AdvMIL) framework. This framework is based on adversarial time-to-event modeling, and integrates the multiple instance learning (MIL) that is much necessary for WSI representation learning. It is a plug-and-play one, so that most existing MIL-based end-to-end methods can be easily upgraded by applying this framework, gaining the improved abilities of survival distribution estimation and semi-supervised learning. Our extensive experiments show that AdvMIL not only could often bring performance improvement to mainstream WSI survival analysis methods at a relatively low computational cost, but also enables these methods to effectively utilize unlabeled data via semi-supervised learning. Moreover, it is observed that AdvMIL could help improving the robustness of models against patch occlusion and two representative image noises. The proposed AdvMIL framework could promote the research of survival analysis in computational pathology with its novel adversarial MIL paradigm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
99完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
ding应助孙萌萌采纳,获得20
1秒前
heheha完成签到,获得积分10
2秒前
刘太冰完成签到,获得积分10
2秒前
3秒前
思玉发布了新的文献求助10
3秒前
man发布了新的文献求助10
4秒前
小玲玲完成签到,获得积分10
5秒前
wuti完成签到,获得积分10
5秒前
5秒前
斯文败类应助小刘小刘采纳,获得10
5秒前
邵将发布了新的文献求助10
5秒前
aeyang发布了新的文献求助10
5秒前
bkagyin应助WW采纳,获得10
5秒前
6秒前
6秒前
MYSHOW发布了新的文献求助30
6秒前
6秒前
不知道发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
吃鱼鱼鱼完成签到,获得积分10
7秒前
8秒前
松桕柏完成签到,获得积分10
8秒前
9秒前
刻苦的三问应助思玉采纳,获得10
9秒前
9秒前
wuti发布了新的文献求助20
9秒前
无花果应助刘天强采纳,获得10
10秒前
bubbull发布了新的文献求助10
10秒前
清樾完成签到 ,获得积分10
10秒前
zhang完成签到,获得积分10
10秒前
驱蚊器发布了新的文献求助30
11秒前
高高发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403