Uncertainty quantification and identification of SST turbulence model parameters based on Bayesian optimization algorithm in supersonic flow

雷诺平均Navier-Stokes方程 湍流 灵敏度(控制系统) 校准 Sobol序列 数学 替代模型 计算流体力学 不确定度量化 超音速 算法 应用数学 机械 物理 数学优化 统计 蒙特卡罗方法 工程类 电子工程
作者
Maotao Yang,Mingming Guo,Yi Zhang,Ye Tian,Meihui Yi,Jialing Le,Hua Zhang
出处
期刊:International Journal for Numerical Methods in Fluids [Wiley]
标识
DOI:10.1002/fld.5245
摘要

Abstract The Reynolds‐Averaged Navier–Stokes (RANS) model is the main model in engineering applications today. However, the normal value of the closure coefficient of the RANS turbulence model is determined based on some simple basic flows and may no longer be applicable for complex flows. In this paper, the closure coefficient of shear stress transport (SST) turbulence model is recalibrated by combining Bayesian method and particle swarm optimization algorithm, so as to improve the numerical simulation accuracy of wall pressure in supersonic flow. First, the obtained prior samples were numerically calculated, and the Sobol index of the closure coefficient was calculated by sensitivity analysis method to characterize the sensitivity of the wall pressure to the model parameters. Second, combined with the uncertainty of propagation parameters by non‐intrusive polynomial chaos (NIPC). Finally, Bayesian optimization is used to quantify the uncertainty and obtain the maximum likelihood function estimation and optimal parameters. The results show that the maximum relative error of wall pressure predicted by the SST turbulence model decreases from 29.71% to 9.00%, and the average relative error decreases from 9.86% to 3.67% through the parameter calibration of Bayesian optimization method. In addition, the system evaluated the calibration effect of three criteria, and the calibration results parameters under the three criteria were all better than the calculated results of the nominal values. Meanwhile, the velocity profile and density profile of the flow field were also analyzed. Finally, the same calibration method was applied to the supersonic hollow cylinder and BSL (Baseline) turbulence model, and the same calibration results were obtained, which verified the universality of the calibration method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
流落尘世完成签到,获得积分10
刚刚
细心老姆发布了新的文献求助30
刚刚
龙泪个萌乃完成签到,获得积分20
1秒前
huangrui完成签到 ,获得积分10
2秒前
2秒前
mature0821完成签到,获得积分10
2秒前
宋晓蓝完成签到,获得积分10
3秒前
阳光的芯发布了新的文献求助10
3秒前
4秒前
Nana发布了新的文献求助10
4秒前
4秒前
大模型应助火星上牛青采纳,获得10
4秒前
5秒前
5秒前
6秒前
笨笨歌曲完成签到,获得积分10
7秒前
8秒前
细心老姆完成签到,获得积分10
9秒前
AnnaTian发布了新的文献求助10
9秒前
vivien发布了新的文献求助10
10秒前
在水一方应助xiaoliu采纳,获得10
11秒前
有丶神完成签到 ,获得积分10
13秒前
小谭完成签到 ,获得积分10
14秒前
14秒前
Lvhao应助lgh采纳,获得10
15秒前
Lucy完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
17秒前
18秒前
腼腆的天奇完成签到,获得积分20
18秒前
19秒前
xiaoliu发布了新的文献求助10
21秒前
大大小小发布了新的文献求助10
22秒前
kkdsseed完成签到,获得积分10
22秒前
Blueyi发布了新的文献求助10
22秒前
一只猪仔777完成签到,获得积分10
23秒前
wstcnsn完成签到,获得积分10
23秒前
23秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157298
求助须知:如何正确求助?哪些是违规求助? 2808647
关于积分的说明 7878088
捐赠科研通 2467070
什么是DOI,文献DOI怎么找? 1313183
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919