已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Uncertainty quantification and identification of SST turbulence model parameters based on Bayesian optimization algorithm in supersonic flow

雷诺平均Navier-Stokes方程 湍流 灵敏度(控制系统) 校准 Sobol序列 数学 替代模型 计算流体力学 不确定度量化 超音速 算法 应用数学 机械 物理 数学优化 统计 蒙特卡罗方法 工程类 电子工程
作者
Maotao Yang,Mingming Guo,Yi Zhang,Ye Tian,Meihui Yi,Jialing Le,Hua Zhang
出处
期刊:International Journal for Numerical Methods in Fluids [Wiley]
标识
DOI:10.1002/fld.5245
摘要

Abstract The Reynolds‐Averaged Navier–Stokes (RANS) model is the main model in engineering applications today. However, the normal value of the closure coefficient of the RANS turbulence model is determined based on some simple basic flows and may no longer be applicable for complex flows. In this paper, the closure coefficient of shear stress transport (SST) turbulence model is recalibrated by combining Bayesian method and particle swarm optimization algorithm, so as to improve the numerical simulation accuracy of wall pressure in supersonic flow. First, the obtained prior samples were numerically calculated, and the Sobol index of the closure coefficient was calculated by sensitivity analysis method to characterize the sensitivity of the wall pressure to the model parameters. Second, combined with the uncertainty of propagation parameters by non‐intrusive polynomial chaos (NIPC). Finally, Bayesian optimization is used to quantify the uncertainty and obtain the maximum likelihood function estimation and optimal parameters. The results show that the maximum relative error of wall pressure predicted by the SST turbulence model decreases from 29.71% to 9.00%, and the average relative error decreases from 9.86% to 3.67% through the parameter calibration of Bayesian optimization method. In addition, the system evaluated the calibration effect of three criteria, and the calibration results parameters under the three criteria were all better than the calculated results of the nominal values. Meanwhile, the velocity profile and density profile of the flow field were also analyzed. Finally, the same calibration method was applied to the supersonic hollow cylinder and BSL (Baseline) turbulence model, and the same calibration results were obtained, which verified the universality of the calibration method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动听饼干完成签到 ,获得积分10
4秒前
Criminology34完成签到,获得积分0
4秒前
Li发布了新的文献求助30
6秒前
猪猪仔完成签到 ,获得积分10
6秒前
9秒前
eclo完成签到 ,获得积分10
13秒前
buqi完成签到,获得积分10
14秒前
整齐白秋完成签到 ,获得积分10
15秒前
动听衬衫完成签到 ,获得积分20
18秒前
19秒前
zkkz完成签到 ,获得积分10
19秒前
HSD发布了新的文献求助10
20秒前
21秒前
21秒前
23秒前
25秒前
飘逸剑发布了新的文献求助10
25秒前
zhangjianzeng完成签到 ,获得积分10
26秒前
朴素海亦发布了新的文献求助10
27秒前
李爱国应助秋浱采纳,获得10
29秒前
Owen应助飘逸剑采纳,获得10
30秒前
shuqi完成签到 ,获得积分10
31秒前
科研通AI6应助纯情的书蝶采纳,获得10
31秒前
Ava应助ccm采纳,获得10
32秒前
阿紫吖完成签到 ,获得积分10
33秒前
hulahula完成签到 ,获得积分10
34秒前
李嘉衡完成签到 ,获得积分10
35秒前
35秒前
长情的芝麻完成签到 ,获得积分10
36秒前
飘逸剑完成签到,获得积分10
36秒前
爱大美完成签到,获得积分10
36秒前
苹什么应助Li采纳,获得10
38秒前
小J应助Li采纳,获得10
38秒前
小白完成签到 ,获得积分10
40秒前
纯情的书蝶完成签到,获得积分10
40秒前
染东发布了新的文献求助10
40秒前
42秒前
刘雨森完成签到 ,获得积分10
42秒前
Mask发布了新的文献求助10
43秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634450
求助须知:如何正确求助?哪些是违规求助? 4731146
关于积分的说明 14988498
捐赠科研通 4792224
什么是DOI,文献DOI怎么找? 2559401
邀请新用户注册赠送积分活动 1519677
关于科研通互助平台的介绍 1479851