亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Uncertainty quantification and identification of SST turbulence model parameters based on Bayesian optimization algorithm in supersonic flow

雷诺平均Navier-Stokes方程 湍流 灵敏度(控制系统) 校准 Sobol序列 数学 替代模型 计算流体力学 不确定度量化 超音速 算法 应用数学 机械 物理 数学优化 统计 蒙特卡罗方法 工程类 电子工程
作者
Maotao Yang,Mingming Guo,Yi Zhang,Ye Tian,Meihui Yi,Jialing Le,Hua Zhang
出处
期刊:International Journal for Numerical Methods in Fluids [Wiley]
标识
DOI:10.1002/fld.5245
摘要

Abstract The Reynolds‐Averaged Navier–Stokes (RANS) model is the main model in engineering applications today. However, the normal value of the closure coefficient of the RANS turbulence model is determined based on some simple basic flows and may no longer be applicable for complex flows. In this paper, the closure coefficient of shear stress transport (SST) turbulence model is recalibrated by combining Bayesian method and particle swarm optimization algorithm, so as to improve the numerical simulation accuracy of wall pressure in supersonic flow. First, the obtained prior samples were numerically calculated, and the Sobol index of the closure coefficient was calculated by sensitivity analysis method to characterize the sensitivity of the wall pressure to the model parameters. Second, combined with the uncertainty of propagation parameters by non‐intrusive polynomial chaos (NIPC). Finally, Bayesian optimization is used to quantify the uncertainty and obtain the maximum likelihood function estimation and optimal parameters. The results show that the maximum relative error of wall pressure predicted by the SST turbulence model decreases from 29.71% to 9.00%, and the average relative error decreases from 9.86% to 3.67% through the parameter calibration of Bayesian optimization method. In addition, the system evaluated the calibration effect of three criteria, and the calibration results parameters under the three criteria were all better than the calculated results of the nominal values. Meanwhile, the velocity profile and density profile of the flow field were also analyzed. Finally, the same calibration method was applied to the supersonic hollow cylinder and BSL (Baseline) turbulence model, and the same calibration results were obtained, which verified the universality of the calibration method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wesz9887完成签到,获得积分10
14秒前
15秒前
gfbh完成签到,获得积分10
31秒前
笔墨留香完成签到,获得积分10
36秒前
Criminology34应助科研通管家采纳,获得10
37秒前
JamesPei应助科研通管家采纳,获得10
37秒前
NexusExplorer应助科研通管家采纳,获得30
37秒前
Criminology34应助科研通管家采纳,获得10
37秒前
Criminology34应助科研通管家采纳,获得10
37秒前
CipherSage应助科研通管家采纳,获得10
37秒前
xiaosun发布了新的文献求助10
41秒前
研友_yLpQrn完成签到,获得积分10
44秒前
花花菌完成签到,获得积分10
48秒前
50秒前
53秒前
54秒前
wanjingwan完成签到 ,获得积分10
57秒前
领导范儿应助happy贼王采纳,获得10
1分钟前
冷风完成签到 ,获得积分10
1分钟前
徐per爱豆完成签到 ,获得积分10
1分钟前
今后应助阡陌殇殇采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
Orange应助happy贼王采纳,获得10
1分钟前
RR发布了新的文献求助10
1分钟前
HUOZHUANGCHAO完成签到,获得积分10
1分钟前
1分钟前
Achu发布了新的文献求助10
1分钟前
小葛完成签到,获得积分10
1分钟前
1分钟前
秋殇浅寞完成签到,获得积分10
1分钟前
秋殇浅寞发布了新的文献求助30
1分钟前
Owen应助月白lala采纳,获得10
1分钟前
FashionBoy应助Juniorrr采纳,获得20
1分钟前
1分钟前
拓跋半雪发布了新的文献求助30
1分钟前
happy贼王发布了新的文献求助10
1分钟前
lsl完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253622
求助须知:如何正确求助?哪些是违规求助? 4416941
关于积分的说明 13750721
捐赠科研通 4289366
什么是DOI,文献DOI怎么找? 2353439
邀请新用户注册赠送积分活动 1350176
关于科研通互助平台的介绍 1310096