Anchoring high-density cooperative catalytic sites within triethylenediamine-based ionic-liquid polymers via microenvironment modulation for efficient CO2 fixation

离子液体 催化作用 聚合物 化学 单体 离子键合 化学工程 聚合 位阻效应 环氧化物 高分子化学 离子 有机化学 工程类
作者
Chong Chen,Tao Sun,Yupeng Chen,Yukun Zhang,Nengjie Feng,Hui Wan,Guofeng Guan,Jun Ma
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:330: 125348-125348 被引量:3
标识
DOI:10.1016/j.seppur.2023.125348
摘要

The precise microenvironment modulation of ionic sites to promote the catalytic performances of ionic-liquid polymers for CO2 transformation has been highly attractive but rarely attempted. Herein, we reported a strategy to synthesize the triethylenediamine-derived ionic-liquid polymer (PDD-S) featured with branched structure and high site density (4.10 mmol·g-1). In distinct with the conventional synthetic routes, this method involved the pre-grafting and subsequent self-polymerization of ionic monomer, which suppressed the competitive reactions and broke the limitations of precursor selection, while ensuring the high content and even distribution of ionic sites within the polymeric framework. Furthermore, during CO2 cycloaddition with epoxides we showed that these unique structural features allowed the adequate exposure of active sites under the dual effects of steric hindrance and charge repulsion. The PDD-S exhibited noteworthy catalytic performance, with a carbonate yield of 97.3%, under the moderate conditions (100 oC, 4 h, 1 MPa) in the absence of any metal, co-catalyst, or solvent. Additionally, the desirable reusability, epoxide universality, and structural stability were also attained. The experiments combining with the activation energy and DFT theoretical calculations, attributed the synergistic interplay of tertiary N, quaternary ammonium, and Cl- anions to the acceleration of ring-opening process, thereby promoting the CO2 transformation. The newly developed approach offers one perspective to the controllable fabrication of ionic-liquid polymers for catalytic fixation of CO2.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
juanjuan应助火星上的碧彤采纳,获得10
刚刚
Owen应助一一采纳,获得10
1秒前
1秒前
Annie发布了新的文献求助10
3秒前
lixoii完成签到 ,获得积分10
3秒前
bkagyin应助兴奋的宛亦采纳,获得10
4秒前
聪明迎海完成签到,获得积分10
5秒前
orixero应助个性莺采纳,获得10
6秒前
1257应助野性的凌瑶采纳,获得10
7秒前
111发布了新的文献求助10
7秒前
8秒前
Marco21完成签到,获得积分20
9秒前
薰硝壤应助张张采纳,获得10
10秒前
QQQQQQQW完成签到,获得积分10
11秒前
李健应助Rheane采纳,获得10
11秒前
14秒前
wei123完成签到,获得积分20
15秒前
orixero应助小五采纳,获得30
16秒前
16秒前
努力的小狗屁完成签到 ,获得积分10
17秒前
科研通AI2S应助jia31采纳,获得10
18秒前
平常的可乐完成签到 ,获得积分10
18秒前
20秒前
21秒前
苗玉发布了新的文献求助10
25秒前
呜啦啦完成签到,获得积分20
25秒前
上官若男应助鲤鱼不二采纳,获得10
27秒前
1257应助fbpuf采纳,获得10
28秒前
Robin发布了新的文献求助10
28秒前
Cynthia42完成签到 ,获得积分10
30秒前
32秒前
susan完成签到 ,获得积分10
32秒前
34秒前
爱静静应助小刘爱实验采纳,获得10
36秒前
麦芒拾音柴完成签到,获得积分10
36秒前
在水一方应助青椒采纳,获得10
38秒前
YYYYYY完成签到,获得积分10
38秒前
Robin完成签到,获得积分20
38秒前
shou85完成签到,获得积分10
40秒前
阡陌完成签到,获得积分20
41秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151736
求助须知:如何正确求助?哪些是违规求助? 2803153
关于积分的说明 7852024
捐赠科研通 2460525
什么是DOI,文献DOI怎么找? 1309844
科研通“疑难数据库(出版商)”最低求助积分说明 629061
版权声明 601760