气候学
环境科学
平流层
大气科学
罗斯比波
大气环流
降水
高原(数学)
大气(单位)
对流层
反气旋
季风
东亚季风
辐射压力
强迫(数学)
气候变化
地质学
地理
海洋学
气象学
数学分析
数学
作者
Jianping Huang,Xiuji Zhou,Guoxiong Wu,Xiangde Xu,Qingyun Zhao,Yimin Liu,Anmin Duan,Yongkun Xie,Yaoming Ma,Ping Zhao,Song Yang,Kun Yang,Haijun Yang,Jianchun Bian,Yunfei Fu,Jinming Ge,Yuzhi Liu,Qigang Wu,Haipeng Yu,Binbin Wang,Qing Bao,Kai Qie
摘要
Abstract The Tibetan Plateau (TP) impacts local and remote atmospheric circulations, wherein it mechanically and thermally affects air masses or airflows. Moreover, the TP provides a key channel for substance transport between the troposphere and the stratosphere. This study reviews recent advances in research regarding land–atmosphere coupling processes over the TP. The TP experiences climate warming and wetting. Climate warming has caused glacier retreat, permafrost degradation, and a general increase in vegetation density, while climate wetting has led to a significant increase in the number of major lakes, primarily through increased precipitation. Local and regional climates are affected by interactions between the land and the atmosphere. Namely, the TP drives surface pollutants to the upper troposphere in an Asian summer monsoon (ASM) anticyclone circulation, before spreading to the lower stratosphere. Further, the thermal forcing of the TP plays an essential role in the ASM. TP forcing can modulate hemispheric‐scale atmospheric circulations across all seasons. The TP interacts with remote oceans through a forced atmospheric response and is substantially affected by the evolution of the Earth's climate via promoting Atlantic meridional overturning circulation and eliminating Pacific meridional overturning circulation. The extensive influence of the TP is facilitated by its coupling with the ASM in the summer; whereas its winter influence on climate mainly occurs through Rossby waves. The observed increasing trends of temperature and precipitation over the TP are projected to continue throughout the 21st century.
科研通智能强力驱动
Strongly Powered by AbleSci AI