A multiclass classification model for predicting the thermal conductivity of uranium compounds

热导率 核燃料 欠采样 人工智能 过采样 核数据 计算机科学 材料科学 多类分类 机器学习 支持向量机 核工程 物理 核物理学 工程类 冶金 复合材料 中子 带宽(计算) 计算机网络
作者
Yifan Sun,Masaya Kumagai,Mingzhou Jin,Eimei Sato,Masayo Aoki,Yuji Ohishi,Ken Kurosaki
出处
期刊:Journal of Nuclear Science and Technology [Informa]
卷期号:61 (6): 778-788 被引量:1
标识
DOI:10.1080/00223131.2023.2269974
摘要

ABSTRACTAdvanced nuclear fuels are designed to offer improved performance and accident tolerance, with an emphasis on achieving higher thermal conductivity. While promising fuel candidates like uranium nitrides, carbides, and silicides have been widely studied, the majority of uranium compounds remain unexplored. To search for potential candidates among these unexplored uranium compounds, we incorporated machine learning to accelerate the material discovery process. In this study, we trained a multiclass classification model to predict a compound's thermal conductivity based on 133 input features derived from element properties and temperature. The initial training data consist of over 160,000 processed thermal conductivity records from the Starrydata2 database, but a skewed data class distribution led the trained model to underestimate compound's thermal conductivity. Consequently, we addressed the issue of class imbalance by applying Synthetic Minority Oversampling TEchnique and Random UnderSampling, improving the recall for materials with thermal conductivity higher than 15 W/mK from 0.64 to 0.71. Finally, our best model is used to identify 119 potential advanced fuel candidates with high thermal conductivity among 774 stable uranium compounds. Our results underscore the potential of machine learning in the field of nuclear science, accelerating the discovery of advanced nuclear materials.KEYWORDS: Advanced nuclear fuelsmachine learningthermal conductivity Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe data that support the findings of this study are openly available at https://github.com/AzarashiYifan/classification-uranium-thermal-conductivity.Additional informationFundingThis work was supported by MEXT Innovative Nuclear Research and Development Program Grant Number JPMXD0220354330 and JPMXD0222682541.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助光亮尔槐采纳,获得10
刚刚
scvrl完成签到,获得积分10
1秒前
1秒前
3秒前
chengwanying发布了新的文献求助10
3秒前
kuaile完成签到,获得积分10
3秒前
金牌小魚仔应助冷漠阿沈采纳,获得10
4秒前
4秒前
5秒前
zhang完成签到,获得积分10
5秒前
Lynch发布了新的文献求助10
5秒前
bkagyin应助向连虎采纳,获得10
6秒前
今天也要加油鸭完成签到,获得积分10
6秒前
kk关闭了kk文献求助
7秒前
qq发布了新的文献求助10
7秒前
gaochunjing发布了新的文献求助10
8秒前
VDC应助537采纳,获得20
8秒前
8秒前
小蘑菇应助小白采纳,获得10
10秒前
Dfish发布了新的文献求助10
10秒前
思源应助11111采纳,获得10
11秒前
Hello应助强壮自行车采纳,获得10
11秒前
11秒前
12秒前
镜川禾夕给perdgs的求助进行了留言
12秒前
12秒前
知性的土豆完成签到,获得积分10
13秒前
13秒前
14秒前
科研通AI2S应助12采纳,获得10
14秒前
14秒前
里昂123完成签到,获得积分10
14秒前
汉堡包应助Lynch采纳,获得10
14秒前
桐桐应助加油呀采纳,获得10
15秒前
15秒前
勤奋牛排发布了新的文献求助10
15秒前
16秒前
塞尔达发布了新的文献求助10
16秒前
17秒前
晓巨人发布了新的文献求助10
17秒前
高分求助中
Востребованный временем 2500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
Development and Industrialization of Stereoregular Polynorbornenes 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3420306
求助须知:如何正确求助?哪些是违规求助? 3021507
关于积分的说明 8896539
捐赠科研通 2708761
什么是DOI,文献DOI怎么找? 1485491
科研通“疑难数据库(出版商)”最低求助积分说明 686589
邀请新用户注册赠送积分活动 681765