A multiclass classification model for predicting the thermal conductivity of uranium compounds

热导率 核燃料 欠采样 人工智能 过采样 核数据 计算机科学 材料科学 多类分类 机器学习 支持向量机 核工程 物理 核物理学 工程类 冶金 复合材料 中子 计算机网络 带宽(计算)
作者
Yifan Sun,Masaya Kumagai,Mingzhou Jin,Eimei Sato,Masayo Aoki,Yuji Ohishi,Ken Kurosaki
出处
期刊:Journal of Nuclear Science and Technology [Taylor & Francis]
卷期号:61 (6): 778-788 被引量:1
标识
DOI:10.1080/00223131.2023.2269974
摘要

ABSTRACTAdvanced nuclear fuels are designed to offer improved performance and accident tolerance, with an emphasis on achieving higher thermal conductivity. While promising fuel candidates like uranium nitrides, carbides, and silicides have been widely studied, the majority of uranium compounds remain unexplored. To search for potential candidates among these unexplored uranium compounds, we incorporated machine learning to accelerate the material discovery process. In this study, we trained a multiclass classification model to predict a compound's thermal conductivity based on 133 input features derived from element properties and temperature. The initial training data consist of over 160,000 processed thermal conductivity records from the Starrydata2 database, but a skewed data class distribution led the trained model to underestimate compound's thermal conductivity. Consequently, we addressed the issue of class imbalance by applying Synthetic Minority Oversampling TEchnique and Random UnderSampling, improving the recall for materials with thermal conductivity higher than 15 W/mK from 0.64 to 0.71. Finally, our best model is used to identify 119 potential advanced fuel candidates with high thermal conductivity among 774 stable uranium compounds. Our results underscore the potential of machine learning in the field of nuclear science, accelerating the discovery of advanced nuclear materials.KEYWORDS: Advanced nuclear fuelsmachine learningthermal conductivity Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe data that support the findings of this study are openly available at https://github.com/AzarashiYifan/classification-uranium-thermal-conductivity.Additional informationFundingThis work was supported by MEXT Innovative Nuclear Research and Development Program Grant Number JPMXD0220354330 and JPMXD0222682541.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
薯条完成签到,获得积分10
刚刚
acetdw发布了新的文献求助10
1秒前
参也完成签到 ,获得积分10
1秒前
2秒前
JamesPei应助2641490618采纳,获得10
3秒前
流子完成签到,获得积分10
4秒前
5秒前
5秒前
韩明姝发布了新的文献求助10
6秒前
Shirley发布了新的文献求助20
6秒前
舒服的井发布了新的文献求助200
7秒前
orixero应助lanchong采纳,获得10
8秒前
荼蘼如雪发布了新的文献求助10
8秒前
8秒前
曹先生完成签到,获得积分10
9秒前
Felix0917发布了新的文献求助10
9秒前
王乐安完成签到,获得积分10
9秒前
9秒前
asder发布了新的文献求助200
12秒前
yees完成签到,获得积分20
13秒前
太Crazy辣给太Crazy辣的求助进行了留言
13秒前
manto发布了新的文献求助10
13秒前
木子完成签到,获得积分10
13秒前
13秒前
荼蘼如雪完成签到,获得积分10
14秒前
bin完成签到,获得积分10
14秒前
Bio应助22采纳,获得30
14秒前
14秒前
研友_VZG7GZ应助dayuernihao采纳,获得10
15秒前
lxc发布了新的文献求助10
15秒前
Yancy发布了新的文献求助10
16秒前
17秒前
科研通AI6应助yees采纳,获得10
17秒前
无花果应助keeee采纳,获得10
18秒前
19秒前
NexusExplorer应助lydia采纳,获得10
19秒前
Shirley完成签到,获得积分10
20秒前
东方城发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109426
求助须知:如何正确求助?哪些是违规求助? 4318139
关于积分的说明 13453709
捐赠科研通 4148066
什么是DOI,文献DOI怎么找? 2273021
邀请新用户注册赠送积分活动 1275171
关于科研通互助平台的介绍 1213331