Interpretable Deep Learning Identified the Significance of 1 Gy Volume on Lymphopenia after Radiotherapy in Breast Cancer

医学 乳腺癌 放射治疗 剂量体积直方图 核医学 临床意义 癌症 肿瘤科 放射科 放射治疗计划 内科学
作者
Fang Chen,Ping Zhou,K.W. Lee,Qing Liu,Aya El Helali,Jian‐Yue Jin,A.W.M. Lee,Hao Yu,Feng‐Ming Kong
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:117 (2): e168-e168
标识
DOI:10.1016/j.ijrobp.2023.06.1006
摘要

Lymphopenia is common after radiotherapy (RT) and is known for its significance on poor survival outcomes in patients with breast cancer. Previous work has demonstrated the significance of point dosimetric factors like the volume receiving 5 Gy. Considering the full dosimetric data together, this study aimed to develop and validate predictive models for lymphopenia after RT in breast cancer.Patients with breast cancer treated with radiation therapy in adjuvant setting and with complete dosimetric data were eligible. Combining dose-volume histogram (DVH) dosimetric and clinical factors, dense neural network (DNN) models were developed to predict both the reduction in lymphocyte counts and the graded lymphopenia in breast cancer patients after adjuvant RT. A Shapley additive explanation was applied to explain each feature's directional contributions. The generalization of DNN models was validated in both internal and independent external validation cohorts. P<0.05 was considered to be significant.A total of 928 consecutive patients with invasive breast cancer were eligible for this study. Treatment volumes of nearly all irradiation dose levels of DVH were significant predictors for lymphopenia after RT, including volumes at very low-dose 1 Gy (V1) of all structures considered including the lung, heart and body. DNN models using full DVH dosimetric and clinical factors were built and a simplified model was further established and validated in both internal and external validation cohorts. This simplified DNN AI model, combining full DVH dosimetric parameters of all OARs and five key clinical factors including baseline lymphocyte counts, tumor stage, RT technique, RT fields and RT fractionation, showed a predictive accuracy of 77% and above.This study demonstrated and externally validated the significance of an AI model of combining clinical and full dosimetric data, especially the volume of low dose at as low as 1 Gy of all critical structures on lymphopenia after RT in patients with breast cancer. The significance of V1 deserves special attention, as modern arc RT technology often has relatively high value of this parameter. Further study warranted for breast cancer RT plan optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
傻傻的念瑶完成签到 ,获得积分10
1秒前
JamesPei应助东方红采纳,获得10
2秒前
火龙使者完成签到,获得积分10
3秒前
krovanh完成签到,获得积分10
3秒前
琳琳完成签到,获得积分20
4秒前
红木白花完成签到,获得积分10
4秒前
4秒前
于是完成签到,获得积分10
5秒前
淡然子轩完成签到,获得积分10
5秒前
5秒前
神勇初瑶完成签到,获得积分10
5秒前
ding应助nkr采纳,获得10
5秒前
寒冷苗条应助YY采纳,获得10
6秒前
墨aizhan完成签到,获得积分10
7秒前
longtengfei完成签到,获得积分10
7秒前
负责紊完成签到,获得积分10
7秒前
zhaofw完成签到,获得积分10
8秒前
那一瞬的永恒完成签到,获得积分10
8秒前
带志发布了新的文献求助30
8秒前
贺雪发布了新的文献求助10
8秒前
你好啊发布了新的文献求助10
8秒前
YOMU完成签到,获得积分10
8秒前
8秒前
Lwxbb完成签到,获得积分10
8秒前
8秒前
爱笑的曼易完成签到,获得积分10
8秒前
科研小白完成签到 ,获得积分10
9秒前
太阳风暴剑完成签到,获得积分10
10秒前
luna完成签到,获得积分10
10秒前
鱼儿完成签到 ,获得积分10
10秒前
琳琳发布了新的文献求助10
11秒前
小李完成签到,获得积分10
11秒前
12秒前
儒雅紫夏完成签到,获得积分10
13秒前
科研工完成签到,获得积分10
13秒前
luna发布了新的文献求助10
13秒前
13秒前
z_8023完成签到,获得积分10
14秒前
一路向北4956完成签到,获得积分0
14秒前
跳跃仙人掌应助shawn采纳,获得30
15秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
the development of the right of privacy in new york 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180102
求助须知:如何正确求助?哪些是违规求助? 2830482
关于积分的说明 7977443
捐赠科研通 2492067
什么是DOI,文献DOI怎么找? 1329172
科研通“疑难数据库(出版商)”最低求助积分说明 635704
版权声明 602954