A survey of text detection and recognition algorithms based on deep learning technology

计算机科学 人工智能 光学字符识别 文本检测 文本识别 领域(数学) 机器学习 噪声文本分析 自然语言处理 模式识别(心理学) 情报检索 文本图 图像(数学) 自动汇总 数学 纯数学
作者
Xiaofeng Wang,Zhi-Huang He,Kai Wang,Yifan Wang,Le Zou,Zhize Wu
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:556: 126702-126702 被引量:19
标识
DOI:10.1016/j.neucom.2023.126702
摘要

Optical Character Recognition (OCR) poses a crucial challenge within the realm of computer vision research, as it plays a pivotal role in converting vast amounts of unstructured text data into structured formats to support diverse artificial intelligence applications. The OCR process encompasses two core components: text detection and text recognition. Text detection involves identifying and extracting text regions, achieved through either object detection or segmentation techniques, while text recognition focuses on accurately deciphering the content within these identified regions. In recent years, remarkable strides have been made in the domain of text recognition, primarily driven by deep learning-based models. These models eliminate the need for manual feature processing and excel in recognizing text even within complex scenes, surpassing the performance of traditional text recognition methods and subsequently emerging as the dominant approach. The objective of this paper is to present a comprehensive survey of both text detection and text recognition models. Firstly, we systematically categorize and provide an overview of existing off-the-shelf text detection methods. Subsequently, we conduct an in-depth investigation of six distinct text recognition models, taking into account their unique implementations. Additionally, we explore and analyze the principal datasets that currently prevail in the field of text detection and recognition. Furthermore, this research entails a meticulous performance comparison of various text detection algorithms on the CTW1500, TotalText, and ICDAR2015 datasets. Additionally, we evaluate and scrutinize the efficacy of mainstream text recognition algorithms on the IIIT-5K, SVT, ICDAR2013, SVT-P, CUTE80, and ICDAR2015 datasets. Finally, we conclude with a discussion on the future development and research trends concerning text detection and recognition, providing insights that can further drive progress in this crucial area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙子完成签到 ,获得积分10
刚刚
munantianxia完成签到,获得积分10
1秒前
舒适绮关注了科研通微信公众号
1秒前
酷波er应助萨尔莫斯采纳,获得10
1秒前
邓娇叶发布了新的文献求助10
1秒前
ti完成签到,获得积分10
2秒前
123完成签到,获得积分10
2秒前
2秒前
光亮的幻柏完成签到,获得积分10
3秒前
领导范儿应助活泼的觅云采纳,获得10
3秒前
pluto应助科研通管家采纳,获得20
3秒前
大个应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
123发布了新的文献求助10
4秒前
Zazas完成签到,获得积分10
4秒前
李慧敏完成签到,获得积分10
5秒前
damn发布了新的文献求助30
5秒前
IRIS发布了新的文献求助10
6秒前
万能图书馆应助fsz采纳,获得10
7秒前
跳跃的蝴蝶给跳跃的蝴蝶的求助进行了留言
7秒前
李健应助福西西采纳,获得30
8秒前
8秒前
8秒前
邓娇叶完成签到,获得积分10
9秒前
9秒前
weixiang完成签到,获得积分10
10秒前
10秒前
dfx完成签到,获得积分10
11秒前
赘婿应助邓娇叶采纳,获得10
12秒前
13秒前
萨尔莫斯发布了新的文献求助10
13秒前
任驰骋发布了新的文献求助10
13秒前
长安发布了新的文献求助10
13秒前
maomao给maomao的求助进行了留言
15秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755395
求助须知:如何正确求助?哪些是违规求助? 3298462
关于积分的说明 10105902
捐赠科研通 3013141
什么是DOI,文献DOI怎么找? 1655012
邀请新用户注册赠送积分活动 789339
科研通“疑难数据库(出版商)”最低求助积分说明 753273