过电位
析氧
电解
阳极
铱
氧化物
无定形固体
电解水
交换电流密度
材料科学
化学工程
分解水
制氢
电解质
氧气
无机化学
化学
氢
电化学
催化作用
电极
物理化学
冶金
结晶学
光催化
生物化学
有机化学
工程类
塔菲尔方程
作者
Hao Yu,Fan Liao,Wenxiang Zhu,Keyang Qin,Jie Shi,Mengjie Ma,Youyong Li,Miaomiao Fang,Jiaqi Su,Beibei Song,Lamei Li,Rustem Zairov,Yujin Ji,Mingwang Shao,Qi Shao
出处
期刊:Chemcatchem
[Wiley]
日期:2023-08-03
卷期号:15 (19)
被引量:3
标识
DOI:10.1002/cctc.202300737
摘要
Abstract The increasing popularity of proton exchange membrane electrolysis technology for hydrogen production has brought attention to the electrolytic water reaction. However, the slow kinetics of the oxygen evolution reaction (OER) at the anode have great influence on the overall efficiency of the reaction. While iridium oxide shows excellent stability under acidic conditions, its OER activity still needs to be improved. Here, we synthesized two‐dimensional amorphous iridium oxide (Am−IrO 2 ) nanosheets with the thickness of only 6 nm by a mixed molten salt method. Such nanosheets show an ultralow overpotential of only 230 mV at 10 mA cm −2 in 0.5 M H 2 SO 4 . The overpotential increases only 40 mV after 90 hours of the stability test at this current density. Am−IrO 2 can maintain the current density of ~400 mA cm −2 after 120 hours of test at 1.8 V in the PEM device, demonstrating good industrial prospects. Density functional theoretical calculations show that the oxygen vacancies, together with the upshift of the O 2p band center, are responsible for the improvement of OER in Am−IrO 2 .
科研通智能强力驱动
Strongly Powered by AbleSci AI