Simultaneously enhancing strength and ductility of HCP titanium via multi-modal grain induced extra <c+a> dislocation hardening

材料科学 延展性(地球科学) 硬化(计算) 极限抗拉强度 冶金 加工硬化 应变硬化指数 复合材料 微观结构 蠕动 图层(电子)
作者
Lei Gu,Ao Meng,Xiang Chen,Yonghao Zhao
出处
期刊:Acta Materialia [Elsevier]
卷期号:252: 118949-118949 被引量:43
标识
DOI:10.1016/j.actamat.2023.118949
摘要

According to Considère necking criterion, enhancing strength of a material will decrease its elongation to failure, i.e. ductility, even if the strain hardening rate remains unchanged. Unfortunately, four traditional strengthening mechanisms including grain refinement, deformation, solid solution and 2nd-phase particle strengthening increase the yield strength by increasing the critical shear stress for slip initiation and unexceptionally reduce the strain hardening ability and ductility. Recent experiments revealed that implementation of heterostructures can produce extra hetero-deformation induced (HDI) hardening and thus reduce ductility loss while enhancing strength. However, the improved ductility was still less than that of coarse-grained counterparts. Here we fabricated a bulk heterostructured Ti with a uniform multi-modal grain size distribution in which the single individual micro-grain is surrounded and constrained by three-dimensional ultrafine grains. Tensile tests revealed the multi-modal Ti has a high yield strength of 800 MPa, ductility of 28.5%, and outstanding HDI hardening effect compared with its coarse-grained counterparts (a yield strength of 550 MPa and ductility of 26.5%). These mechanical properties of our multi-modal Ti are also superior to other literature reported data of heterostructured Ti. Microstructural characterization further reveals the uniform distribution between hard and soft domains produces maximum interface density and HDI hardening effect. Moreover, the HDI causes extra 〈c + a〉 geometrically necessary dislocations piling ups in the constrained micro-grains, which produce enough and extra strain hardening to maintain and even enhance slightly the ductility. Our work provides a strategy to simultaneously enhance strength and ductility of metals via enough and extra strain hardening capability increase.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助xtt采纳,获得10
刚刚
3秒前
4秒前
我是sci大王完成签到,获得积分20
4秒前
设计师做做人完成签到,获得积分10
4秒前
小旭vip完成签到 ,获得积分10
5秒前
晨曦完成签到,获得积分10
6秒前
7秒前
Gryphon完成签到,获得积分10
9秒前
dyf完成签到 ,获得积分10
12秒前
YUYI完成签到,获得积分10
12秒前
15秒前
此木完成签到 ,获得积分10
17秒前
得不到发布了新的文献求助10
17秒前
莫西莫西发布了新的文献求助10
18秒前
顺心安荷发布了新的文献求助10
19秒前
kiki发布了新的文献求助10
20秒前
22秒前
科研通AI2S应助蛋壳柯采纳,获得10
22秒前
Owen应助surong采纳,获得10
23秒前
传统的妖妖完成签到,获得积分20
24秒前
xiaosun完成签到,获得积分0
25秒前
26秒前
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
研友_VZG7GZ应助科研通管家采纳,获得10
27秒前
不配.应助科研通管家采纳,获得30
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
在水一方应助科研通管家采纳,获得10
27秒前
27秒前
Hello应助科研通管家采纳,获得10
27秒前
深情安青应助yiding采纳,获得10
28秒前
香蕉梨愁完成签到,获得积分10
31秒前
33秒前
DKL完成签到,获得积分10
35秒前
36秒前
36秒前
飘逸的麦片完成签到,获得积分10
38秒前
38秒前
downdowndown发布了新的文献求助10
38秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155850
求助须知:如何正确求助?哪些是违规求助? 2807060
关于积分的说明 7871807
捐赠科研通 2465463
什么是DOI,文献DOI怎么找? 1312240
科研通“疑难数据库(出版商)”最低求助积分说明 629958
版权声明 601905