已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Attention-Like Multimodality Fusion With Data Augmentation for Diagnosis of Mental Disorders Using MRI

多模态 计算机科学 医学 万维网
作者
Rui Liu,Zhi-An Huang,Yao Hu,Zexuan Zhu,Ka‐Chun Wong,Kay Chen Tan
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (6): 7627-7641 被引量:17
标识
DOI:10.1109/tnnls.2022.3219551
摘要

The globally rising prevalence of mental disorders leads to shortfalls in timely diagnosis and therapy to reduce patients' suffering. Facing such an urgent public health problem, professional efforts based on symptom criteria are seriously overstretched. Recently, the successful applications of computer-aided diagnosis approaches have provided timely opportunities to relieve the tension in healthcare services. Particularly, multimodal representation learning gains increasing attention thanks to the high temporal and spatial resolution information extracted from neuroimaging fusion. In this work, we propose an efficient multimodality fusion framework to identify multiple mental disorders based on the combination of functional and structural magnetic resonance imaging. A multioutput conditional generative adversarial network (GAN) is developed to address the scarcity of multimodal data for augmentation. Based on the augmented training data, the multiheaded gating fusion model is proposed for classification by extracting the complementary features across different modalities. The experiments demonstrate that the proposed model can achieve robust accuracies of 75.1 $\pm$ 1.5%, 72.9 $\pm$ 1.1%, and 87.2 $\pm$ 1.5% for autism spectrum disorder (ASD), attention deficit/hyperactivity disorder, and schizophrenia, respectively. In addition, the interpretability of our model is expected to enable the identification of remarkable neuropathology diagnostic biomarkers, leading to well-informed therapeutic decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YanZhe完成签到,获得积分10
1秒前
聪慧芷巧发布了新的文献求助10
5秒前
颢懿完成签到 ,获得积分10
6秒前
思源应助小狗采纳,获得10
8秒前
Tendency完成签到 ,获得积分10
9秒前
14秒前
快乐排骨汤完成签到 ,获得积分10
14秒前
CipherSage应助yyds采纳,获得10
16秒前
展七完成签到,获得积分10
20秒前
打打应助展七采纳,获得10
23秒前
超级小熊猫完成签到 ,获得积分10
23秒前
糯米糍完成签到,获得积分10
24秒前
lwm不想看文献完成签到 ,获得积分10
25秒前
没有昵称发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
29秒前
无问完成签到,获得积分10
32秒前
斯文败类应助斯文啊斯文采纳,获得10
33秒前
Hello应助蚂蚁Y嘿采纳,获得10
38秒前
早睡能长个完成签到,获得积分10
40秒前
cc应助科研通管家采纳,获得10
42秒前
Magali应助科研通管家采纳,获得30
42秒前
CodeCraft应助科研通管家采纳,获得10
42秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
42秒前
42秒前
HOO发布了新的文献求助10
47秒前
Seciy完成签到 ,获得积分10
48秒前
如意的芷天完成签到,获得积分10
49秒前
李李李李李完成签到,获得积分10
51秒前
斯文啊斯文完成签到,获得积分20
54秒前
Mulee完成签到,获得积分20
55秒前
壮观的谷冬完成签到 ,获得积分10
55秒前
AFM完成签到 ,获得积分10
55秒前
56秒前
pcr163应助Suchus采纳,获得200
56秒前
ztayx完成签到 ,获得积分10
57秒前
栗子味的茶完成签到 ,获得积分10
1分钟前
蚂蚁Y嘿完成签到,获得积分10
1分钟前
蚂蚁Y嘿发布了新的文献求助10
1分钟前
lily完成签到,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959971
求助须知:如何正确求助?哪些是违规求助? 3506216
关于积分的说明 11128425
捐赠科研通 3238197
什么是DOI,文献DOI怎么找? 1789577
邀请新用户注册赠送积分活动 871810
科研通“疑难数据库(出版商)”最低求助积分说明 803042