On the surface passivating principle of functional thiol towards efficient and stable perovskite nanocrystal solar cells

钝化 脱质子化 钙钛矿(结构) 纳米晶 硫醇 材料科学 卤化物 纳米技术 表面改性 半胱氨酸 配体(生物化学) 化学工程 太阳能电池 化学 无机化学 有机化学 物理化学 图层(电子) 光电子学 工程类 离子 生物化学 受体
作者
Hochan Song,Jonghee Yang,Seul Gi Lim,Jeongjae Lee,Woo Hyeon Jeong,Hyuk Choi,Ju Hyeok Lee,Hyun You Kim,Bo Ram Lee,Hyosung Choi
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:454: 140224-140224 被引量:24
标识
DOI:10.1016/j.cej.2022.140224
摘要

• Thiolate in cysteine enables rigorous surface passivation of perovskite nanocrystals. • Cys-S - treatment improves performance (15.5%) and stability of solar cells. • Deprotonation of thiol is a key step to activate thiol binding on the surface. Inorganic halide perovskite nanocrystals (PNCs) have demonstrated promising potential for solar cell applications. However, the lability of photoactive CsPbI 3 phase under ambient conditions, coupled with considerable amounts of surface defects induced during solidification process, have impeded achieving high performances and longevities of the PNC-based solar cells. Post-treatment of the PNCs with organic ligands has been proposed as an efficient strategy for surface passivation, which, however, still relies on the binding actions of typical functional groups towards surface defects (especially, carboxylates onto iodine vacancies). Herein, we uncover that thiolate, a deprotonated form of thiol, renders distinctive binding feasibility towards iodine vacancies at the CsPbI 3 PNC surface, compared with those of typical functional groups. By treating the PNC solid with deprotonated cysteine as a ligand, the surface defects are comprehensively passivated. The solar cells with the modified PNC films demonstrate an excellent PCE of 15.5% and improved device longevity (77% of initial PCE over 2 months) under ambient conditions. Our work not only elucidates the chemical principles of thiol on the binding with PNC surface, but also corroborates the power of thiolate as a promising strategy to develop high performances and improved longevity of solar cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助6rkuttsmdt采纳,获得10
刚刚
ding应助happyxuexi采纳,获得10
1秒前
猛男航完成签到,获得积分10
1秒前
get发布了新的文献求助10
3秒前
haha完成签到 ,获得积分10
5秒前
kingwill应助ddd采纳,获得20
5秒前
Agernon应助单纯尔蓝采纳,获得10
5秒前
8秒前
8秒前
9秒前
10秒前
10秒前
MA完成签到,获得积分10
13秒前
geo完成签到,获得积分10
13秒前
风中的天空完成签到,获得积分10
13秒前
zwtaihua1025完成签到,获得积分10
13秒前
Sunny发布了新的文献求助10
13秒前
谦让寄容发布了新的文献求助10
15秒前
happyxuexi发布了新的文献求助10
15秒前
15秒前
zwtaihua1025发布了新的文献求助10
16秒前
Jasper应助耶zyf采纳,获得10
16秒前
17秒前
17秒前
17秒前
青花发布了新的文献求助10
20秒前
榴莲受众完成签到,获得积分20
20秒前
zs完成签到 ,获得积分10
20秒前
李温温完成签到,获得积分10
21秒前
李健的小迷弟应助tiantian采纳,获得10
22秒前
22秒前
22秒前
ceeray23应助嘚嘚采纳,获得10
22秒前
神勇映安发布了新的文献求助30
23秒前
XXX发布了新的文献求助10
23秒前
常毓璇完成签到,获得积分10
23秒前
24秒前
CYX发布了新的文献求助10
24秒前
星星会开花完成签到,获得积分10
26秒前
dy完成签到,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552161
求助须知:如何正确求助?哪些是违规求助? 3128470
关于积分的说明 9378076
捐赠科研通 2827552
什么是DOI,文献DOI怎么找? 1554473
邀请新用户注册赠送积分活动 725481
科研通“疑难数据库(出版商)”最低求助积分说明 714915