Improvement of blueberry freshness prediction based on machine learning and multi-source sensing in the cold chain logistics

冷链 支持向量机 机器学习 计算机科学 人工智能 工艺工程 食品科学 化学 工程类
作者
Wentao Huang,Xuepei Wang,Junchang Zhang,Jie Xia,Xiaoshuan Zhang
出处
期刊:Food Control [Elsevier]
卷期号:145: 109496-109496 被引量:75
标识
DOI:10.1016/j.foodcont.2022.109496
摘要

Traditional fruit freshness prediction and modeling heavily rely on various physicochemical indicators (such as water loss rate, pH, and VC content), which is facing predicaments of time-consuming, laborious, destructive, and low prediction accuracy. To this end, this paper proposes a new method for fruit freshness prediction based on multi-sensing technology and machine learning algorithm, thereby improving the automation, intelligentialize, and high accuracy of fruit freshness prediction. The critical control points of blueberry cold chain logistics were analyzed firstly based on the HACCP method, identifying the key gas parameters (O2, CO2, and C2H4) and interaction mechanisms of gas and blueberry freshness. Then the blueberry cold chain microenvironment monitoring platform (BCCMMP) was developed for critical gas content monitoring at different temperatures (0 °C, 5 °C, and 22 °C). It was demonstrated that gas information can replace quality information to characterize blueberry freshness, and further emerging machine learning (ML) algorithms (BP, RBF, SVM, and ELM) were constructed for blueberry freshness prediction using critical gas information, and the results showed prediction accuracies of 90.87% (BP), 92.24% (RBF), 94.01% (SVM), and 91.31% (ELM). By contrast, the 85.10% prediction accuracy was achieved by the traditional Arrhenius equation method based on temperature and quality parameters. Through the automatic non-destructive acquisition of sensing data and emerging machine learning algorithms, this paper provides a new approach to improving the freshness prediction accuracy and food quality management level during fruit cold chain logistics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
典雅以南发布了新的文献求助10
刚刚
西西完成签到 ,获得积分10
刚刚
1秒前
1秒前
风和日li完成签到,获得积分0
1秒前
1秒前
rivalsdd发布了新的文献求助10
2秒前
3秒前
123完成签到,获得积分10
3秒前
yy发布了新的文献求助10
3秒前
4秒前
高贵的洋葱完成签到,获得积分10
4秒前
陶醉的甜瓜完成签到,获得积分10
5秒前
5秒前
真实的钢铁侠完成签到,获得积分10
5秒前
竹筏过海应助Dong采纳,获得50
8秒前
我姓孙发布了新的文献求助10
8秒前
郭桂桂发布了新的文献求助10
8秒前
深情安青应助Fann采纳,获得10
8秒前
NexusExplorer应助小路采纳,获得10
8秒前
kxdxng发布了新的文献求助10
8秒前
8秒前
清和漾发布了新的文献求助10
9秒前
FashionBoy应助拼搏向前采纳,获得10
9秒前
9秒前
ty心明亮完成签到 ,获得积分10
10秒前
彭于晏应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得30
11秒前
桐桐应助科研通管家采纳,获得30
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
xzy998应助科研通管家采纳,获得30
11秒前
iNk应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
Singularity应助科研通管家采纳,获得10
11秒前
11秒前
Hello应助科研通管家采纳,获得10
11秒前
11秒前
Clover04应助邢契采纳,获得10
12秒前
打打应助Sherry采纳,获得10
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144274
求助须知:如何正确求助?哪些是违规求助? 2795879
关于积分的说明 7816861
捐赠科研通 2451946
什么是DOI,文献DOI怎么找? 1304774
科研通“疑难数据库(出版商)”最低求助积分说明 627291
版权声明 601419