Improvement of blueberry freshness prediction based on machine learning and multi-source sensing in the cold chain logistics

冷链 支持向量机 机器学习 计算机科学 人工智能 工艺工程 数据挖掘 食品科学 化学 工程类
作者
Wentao Huang,Xuepei Wang,Junchang Zhang,Jie Xia,Xiaoshuan Zhang
出处
期刊:Food Control [Elsevier]
卷期号:145: 109496-109496 被引量:80
标识
DOI:10.1016/j.foodcont.2022.109496
摘要

Traditional fruit freshness prediction and modeling heavily rely on various physicochemical indicators (such as water loss rate, pH, and VC content), which is facing predicaments of time-consuming, laborious, destructive, and low prediction accuracy. To this end, this paper proposes a new method for fruit freshness prediction based on multi-sensing technology and machine learning algorithm, thereby improving the automation, intelligentialize, and high accuracy of fruit freshness prediction. The critical control points of blueberry cold chain logistics were analyzed firstly based on the HACCP method, identifying the key gas parameters (O2, CO2, and C2H4) and interaction mechanisms of gas and blueberry freshness. Then the blueberry cold chain microenvironment monitoring platform (BCCMMP) was developed for critical gas content monitoring at different temperatures (0 °C, 5 °C, and 22 °C). It was demonstrated that gas information can replace quality information to characterize blueberry freshness, and further emerging machine learning (ML) algorithms (BP, RBF, SVM, and ELM) were constructed for blueberry freshness prediction using critical gas information, and the results showed prediction accuracies of 90.87% (BP), 92.24% (RBF), 94.01% (SVM), and 91.31% (ELM). By contrast, the 85.10% prediction accuracy was achieved by the traditional Arrhenius equation method based on temperature and quality parameters. Through the automatic non-destructive acquisition of sensing data and emerging machine learning algorithms, this paper provides a new approach to improving the freshness prediction accuracy and food quality management level during fruit cold chain logistics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助卑以自牧采纳,获得10
刚刚
脑洞疼应助xieunx采纳,获得10
刚刚
wjw关闭了wjw文献求助
刚刚
夜白完成签到,获得积分0
刚刚
Cynthia完成签到,获得积分10
刚刚
美丽小蕾完成签到,获得积分10
刚刚
心花怒放完成签到,获得积分20
刚刚
林上草应助xzn1123采纳,获得10
1秒前
qwt_hello发布了新的文献求助10
2秒前
3秒前
科研虎完成签到,获得积分10
3秒前
大眼的平松完成签到,获得积分10
3秒前
丶呆久自然萌完成签到,获得积分10
3秒前
3秒前
4秒前
淡淡的夜山完成签到,获得积分10
4秒前
SYLH应助阿勒泰采纳,获得10
5秒前
5秒前
5秒前
菊菊关注了科研通微信公众号
6秒前
6秒前
6秒前
水星MERCURY应助雨夜星空采纳,获得10
7秒前
7秒前
7秒前
8秒前
九九完成签到,获得积分10
8秒前
dwl完成签到 ,获得积分10
8秒前
懵懂的尔风完成签到 ,获得积分10
8秒前
8秒前
456完成签到,获得积分10
8秒前
科研通AI5应助以恒之心采纳,获得10
9秒前
易哒哒发布了新的文献求助10
10秒前
10秒前
11秒前
微笑完成签到,获得积分10
11秒前
火星上的映安完成签到 ,获得积分10
11秒前
Microgan完成签到,获得积分10
11秒前
进击的小胳膊完成签到,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762