Hydroxamic acid pre-adsorption raises the efficiency of cosensitized solar cells

色素敏化染料 材料科学 介孔材料 能量转换效率 光伏系统 吸附 纳米技术 电解质 二氧化钛 化学工程 光电子学 化学 电极 催化作用 有机化学 电气工程 物理化学 工程类 冶金
作者
Yameng Ren,Dan Zhang,Jiajia Suo,Yiming Cao,Felix T. Eickemeyer,Nick Vlachopoulos,Shaik M. Zakeeruddin,Anders Hagfeldt,Michaël Grätzel
出处
期刊:Nature [Springer Nature]
卷期号:613 (7942): 60-65 被引量:348
标识
DOI:10.1038/s41586-022-05460-z
摘要

Dye-sensitized solar cells (DSCs) convert light into electricity using photosensitizers adsorbed on the surface of nanocrystalline mesoporous titanium dioxide (TiO2) films along with electrolytes or solid charge-transport materials1-3. They possess many features including transparency, multicolor and low-cost fabrication, and are being deployed in glass facades, skylights and greenhouses4. Recent development of sensitizers5-10, redox mediators11-13 and device structures14 has improved the performance of DSCs, particularly under ambient light conditions14-17. To further enhance its efficiency, it is pivotal to control the assembly of dye molecules on the surface of TiO2 that favors charge generation. Here, we report a route of pre-adsorbing a monolayer of a hydroxamic acid derivative on the surface of TiO2 to improve the dye molecular packing and photovoltaic performance of two newly-designed co-adsorbed sensitizers that harvests light quantitatively across the entire visible domain. The best performing cosensitized solar cells exhibited a power conversion efficiency (PCE) of 15.2% (independently confirmed 15.2%) under standard air mass 1.5 global simulated sunlight, and showed long-term operational stability (500 hours). Devices with a larger active area of 2.8 cm2 exhibited PCE of 28.4 % to 30.2 % over a wide range of ambient light intensities along with high stability. Our findings pave the way for facile access to high performance DSCs and offer promising prospects for applications as power supply and battery replacement for low-power electronic devices18-20 that use ambient light as their energy source.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
enen完成签到,获得积分20
刚刚
浮游应助甜美乘云采纳,获得10
1秒前
怕黑剑封发布了新的文献求助10
1秒前
wanci应助George采纳,获得30
1秒前
1秒前
Orange应助学霸土豆采纳,获得20
3秒前
科研通AI6应助田字格采纳,获得10
3秒前
Rear21完成签到,获得积分10
3秒前
无聊的老姆完成签到 ,获得积分10
4秒前
怕黑剑封发布了新的文献求助10
6秒前
6秒前
7秒前
灵巧灵萱发布了新的文献求助10
7秒前
专注的问寒应助三七采纳,获得20
7秒前
科目三应助欣怡高采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
9秒前
mufcyang发布了新的文献求助10
10秒前
11秒前
白晓松发布了新的文献求助10
11秒前
xing发布了新的文献求助10
11秒前
学霸土豆发布了新的文献求助20
13秒前
14秒前
15秒前
蓝天发布了新的文献求助10
16秒前
Rocket完成签到,获得积分10
16秒前
vtfangfangfang完成签到,获得积分10
17秒前
17秒前
德玛西亚完成签到,获得积分10
21秒前
隐形刺猬完成签到 ,获得积分10
21秒前
怕黑剑封完成签到,获得积分20
21秒前
村上种树完成签到,获得积分10
21秒前
21秒前
李爱国应助平淡的翅膀采纳,获得10
23秒前
李爱国应助怕黑剑封采纳,获得10
25秒前
25秒前
27秒前
爆米花应助晴朗采纳,获得10
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714