A hybrid framework for forecasting power generation of multiple renewable energy sources

可再生能源 计算机科学 混合动力 发电 环境经济学 功率(物理) 环境科学 业务 经济 工程类 量子力学 电气工程 物理
作者
Jianqin Zheng,Jian Du,Bohong Wang,Jiří Jaromír Klemeš,Qi Liao,Yongtu Liang
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:172: 113046-113046 被引量:106
标识
DOI:10.1016/j.rser.2022.113046
摘要

The accurate power generation forecast of multiple renewable energy sources is significant for the power scheduling of renewable energy systems. However, previous studies focused more on the prediction of a single energy source, ignoring the relationship among different energy sources, and failing to predict accurate power generation for all energy sources simultaneously. This paper proposes a hybrid framework for the power generation forecast of multiple renewable energy sources to overcome deficiencies. A Convolutional Neural Network (CNN) is developed to extract the local correlations among multiple energy sources, the Attention-based Long Short-Term Memory (A-LSTM) network is developed to capture the nonlinear time-series characteristics of weather conditions and individual energy, and the Auto-Regression model is applied to extract the linear time-series characteristics of each energy source. The accuracy and practicality of the proposed method are verified by taking a renewable energy system as an example. The results show that the hybrid framework is more accurate than other advanced models, such as artificial neural networks and decision trees. Mean absolute errors of the proposed method are reduced by 13.4%, 22.9%, and 27.1% for solar PV, solar thermal, and wind power compared with A-LSTM. The sensitivity analysis has been conducted to test the effectiveness of each component of the proposed hybrid framework to prove the significance of energy correlation patterns with higher accuracy and stability compared with the other two patterns. • Propose a hybrid framework for power forecast of multiple renewable energy sources. • Improve forecast accuracy by considering energy correlation patterns. • Sensitivity analysis is conducted to discuss each information pattern. • Method verified by a real renewable energy system case.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心灵美莺完成签到 ,获得积分10
刚刚
1秒前
RATHER完成签到,获得积分10
2秒前
2秒前
姜姜完成签到,获得积分10
3秒前
Jia应助coral采纳,获得10
3秒前
T012完成签到,获得积分10
4秒前
dalong发布了新的文献求助10
4秒前
Geoyee完成签到,获得积分10
5秒前
5秒前
6秒前
sunyanghu369发布了新的文献求助10
6秒前
尧思瑶完成签到,获得积分20
6秒前
6秒前
jinhuanghuiyu应助bwh采纳,获得10
9秒前
zhw发布了新的文献求助10
9秒前
Geoyee发布了新的文献求助10
9秒前
ding应助诚心冬亦采纳,获得10
9秒前
踏实的纸飞机完成签到 ,获得积分10
10秒前
逆旅淹留完成签到,获得积分10
10秒前
10秒前
10秒前
在水一方应助sunyanghu369采纳,获得10
10秒前
救救孩子吧应助唔西迪西采纳,获得10
10秒前
vv完成签到,获得积分10
11秒前
无情的宛菡完成签到 ,获得积分10
13秒前
可耐的思远完成签到 ,获得积分10
13秒前
zhw完成签到,获得积分10
13秒前
breaks完成签到,获得积分10
14秒前
QWE发布了新的文献求助10
14秒前
魔幻的砖头完成签到,获得积分10
15秒前
阿妍碎碎念完成签到,获得积分10
16秒前
18秒前
19秒前
20秒前
搜集达人应助唔西迪西采纳,获得10
20秒前
22秒前
25秒前
25秒前
26秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464375
求助须知:如何正确求助?哪些是违规求助? 3057717
关于积分的说明 9058109
捐赠科研通 2747718
什么是DOI,文献DOI怎么找? 1507609
科研通“疑难数据库(出版商)”最低求助积分说明 696564
邀请新用户注册赠送积分活动 696159