A hybrid framework for forecasting power generation of multiple renewable energy sources

可再生能源 计算机科学 混合动力 发电 环境经济学 功率(物理) 环境科学 业务 经济 工程类 量子力学 电气工程 物理
作者
Jianqin Zheng,Jian Du,Bohong Wang,Jiří Jaromír Klemeš,Qi Liao,Yongtu Liang
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:172: 113046-113046 被引量:110
标识
DOI:10.1016/j.rser.2022.113046
摘要

The accurate power generation forecast of multiple renewable energy sources is significant for the power scheduling of renewable energy systems. However, previous studies focused more on the prediction of a single energy source, ignoring the relationship among different energy sources, and failing to predict accurate power generation for all energy sources simultaneously. This paper proposes a hybrid framework for the power generation forecast of multiple renewable energy sources to overcome deficiencies. A Convolutional Neural Network (CNN) is developed to extract the local correlations among multiple energy sources, the Attention-based Long Short-Term Memory (A-LSTM) network is developed to capture the nonlinear time-series characteristics of weather conditions and individual energy, and the Auto-Regression model is applied to extract the linear time-series characteristics of each energy source. The accuracy and practicality of the proposed method are verified by taking a renewable energy system as an example. The results show that the hybrid framework is more accurate than other advanced models, such as artificial neural networks and decision trees. Mean absolute errors of the proposed method are reduced by 13.4%, 22.9%, and 27.1% for solar PV, solar thermal, and wind power compared with A-LSTM. The sensitivity analysis has been conducted to test the effectiveness of each component of the proposed hybrid framework to prove the significance of energy correlation patterns with higher accuracy and stability compared with the other two patterns. • Propose a hybrid framework for power forecast of multiple renewable energy sources. • Improve forecast accuracy by considering energy correlation patterns. • Sensitivity analysis is conducted to discuss each information pattern. • Method verified by a real renewable energy system case.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
seedcode完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
2秒前
3秒前
3秒前
明亮无颜完成签到,获得积分10
5秒前
细腻怜容完成签到,获得积分10
5秒前
5秒前
ZHANG发布了新的文献求助10
5秒前
沉默的婴完成签到 ,获得积分10
6秒前
热心不凡完成签到,获得积分10
6秒前
冷傲迎梦完成签到,获得积分20
7秒前
8秒前
oldlee发布了新的文献求助20
8秒前
hardyx发布了新的文献求助10
8秒前
荡乎宇宙如虚舟完成签到,获得积分10
8秒前
小谢完成签到,获得积分10
9秒前
明亮无颜发布了新的文献求助10
10秒前
图图发布了新的文献求助10
10秒前
研友_IEEE快到碗里来完成签到,获得积分10
11秒前
IleraYoung发布了新的文献求助10
11秒前
刻苦小丸子完成签到,获得积分10
12秒前
小谢发布了新的文献求助10
12秒前
水本无忧87完成签到,获得积分10
14秒前
刻苦的衫完成签到,获得积分10
14秒前
Snowy完成签到,获得积分10
15秒前
e746700020完成签到,获得积分10
16秒前
16秒前
李爱国应助魏小梅采纳,获得10
16秒前
HK完成签到 ,获得积分10
17秒前
wangsiyuan完成签到 ,获得积分10
17秒前
yoyo完成签到,获得积分10
17秒前
haowang完成签到,获得积分10
17秒前
qingli完成签到,获得积分10
17秒前
April完成签到,获得积分10
18秒前
小魏哥完成签到,获得积分10
18秒前
科研民工完成签到,获得积分10
18秒前
bailing128完成签到,获得积分10
19秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3758373
求助须知:如何正确求助?哪些是违规求助? 3301280
关于积分的说明 10117157
捐赠科研通 3015743
什么是DOI,文献DOI怎么找? 1656238
邀请新用户注册赠送积分活动 790294
科研通“疑难数据库(出版商)”最低求助积分说明 753766