A Novel Multi-modal Population-graph based Framework for Patients of Esophageal Squamous Cell Cancer Prognostic Risk Prediction

食管癌 情态动词 食管鳞状细胞癌 鳞状细胞癌 计算机科学 图形 医学 内科学 癌症 肿瘤科 理论计算机科学 化学 高分子化学
作者
Chengyu Wu,Shuai Wang,Yaqi Wang,Chengkai Wang,Huiyu Zhou,Yatao Zhang,Qifeng Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jbhi.2024.3410543
摘要

Prognostic risk prediction is pivotal for clinicians to appraise the patient's esophageal squamous cell cancer (ESCC) progression status precisely and tailor individualized therapy treatment plans. Currently, CT-based multi-modal prognostic risk prediction methods have gradually attracted the attention of researchers for their universality, which is also able to be applied in scenarios of preoperative prognostic risk assessment in the early stages of cancer. However, much of the current work focuses only on CT images of the primary tumor, ignoring the important role that CT images of lymph nodes play in prognostic risk prediction. Additionally, it is important to consider and explore the inter-patient feature similarity in prognosis when developing models. To solve these problems, we proposed a novel multi-modal population-graph based framework leveraging CT images including primary tumor and lymph nodes combined with clinical, hematology, and radiomics data for ESCC prognostic risk prediction. A patient population graph was constructed to excavate the homogeneity and heterogeneity of inter-patient feature embedding. Moreover, a novel node-level multi-task joint loss was proposed for graph model optimization through a supervised-based task and an unsupervised-based task. Sufficient experimental results show that our model achieved state-of-the-art performance compared with other baseline models as well as the gold standard on discriminative ability, risk stratification, and clinical utility. The core code is available at https://github.com/wuchengyu123/MPGSurv.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
缓慢夜阑发布了新的文献求助10
6秒前
XIAOWANG发布了新的文献求助30
7秒前
7秒前
大模型应助zorro3574采纳,获得10
7秒前
8秒前
9秒前
可乐不加冰完成签到 ,获得积分10
9秒前
su发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
李健应助研友_r8YgPn采纳,获得10
10秒前
药小博发布了新的文献求助10
10秒前
大模型应助安静海露采纳,获得10
11秒前
活力的驳发布了新的文献求助10
11秒前
上官若男应助只铃子采纳,获得10
12秒前
jiaojiao发布了新的文献求助10
12秒前
zjy欧烨完成签到,获得积分10
13秒前
LMX发布了新的文献求助10
13秒前
13秒前
13秒前
活力的驳发布了新的文献求助10
14秒前
活力的驳发布了新的文献求助10
14秒前
活力的驳发布了新的文献求助10
14秒前
活力的驳发布了新的文献求助10
14秒前
情怀应助su采纳,获得10
15秒前
18秒前
风萧萧兮易水寒完成签到,获得积分10
19秒前
Lxx完成签到,获得积分10
19秒前
一一完成签到,获得积分10
21秒前
21秒前
21秒前
Allon完成签到 ,获得积分20
22秒前
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959821
求助须知:如何正确求助?哪些是违规求助? 3506056
关于积分的说明 11127696
捐赠科研通 3237994
什么是DOI,文献DOI怎么找? 1789429
邀请新用户注册赠送积分活动 871773
科研通“疑难数据库(出版商)”最低求助积分说明 803021