A Novel Multi-modal Population-graph based Framework for Patients of Esophageal Squamous Cell Cancer Prognostic Risk Prediction

食管癌 情态动词 食管鳞状细胞癌 鳞状细胞癌 计算机科学 图形 医学 内科学 癌症 肿瘤科 理论计算机科学 化学 高分子化学
作者
Chengyu Wu,Shuai Wang,Yaqi Wang,Chengkai Wang,Huiyu Zhou,Yatao Zhang,Qifeng Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jbhi.2024.3410543
摘要

Prognostic risk prediction is pivotal for clinicians to appraise the patient's esophageal squamous cell cancer (ESCC) progression status precisely and tailor individualized therapy treatment plans. Currently, CT-based multi-modal prognostic risk prediction methods have gradually attracted the attention of researchers for their universality, which is also able to be applied in scenarios of preoperative prognostic risk assessment in the early stages of cancer. However, much of the current work focuses only on CT images of the primary tumor, ignoring the important role that CT images of lymph nodes play in prognostic risk prediction. Additionally, it is important to consider and explore the inter-patient feature similarity in prognosis when developing models. To solve these problems, we proposed a novel multi-modal population-graph based framework leveraging CT images including primary tumor and lymph nodes combined with clinical, hematology, and radiomics data for ESCC prognostic risk prediction. A patient population graph was constructed to excavate the homogeneity and heterogeneity of inter-patient feature embedding. Moreover, a novel node-level multi-task joint loss was proposed for graph model optimization through a supervised-based task and an unsupervised-based task. Sufficient experimental results show that our model achieved state-of-the-art performance compared with other baseline models as well as the gold standard on discriminative ability, risk stratification, and clinical utility. The core code is available at https://github.com/wuchengyu123/MPGSurv.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
六七七应助小华安采纳,获得10
1秒前
汉堡包应助huahuahua采纳,获得10
1秒前
00完成签到,获得积分10
1秒前
1秒前
77完成签到 ,获得积分10
2秒前
2秒前
海鸥完成签到,获得积分0
2秒前
4秒前
猪猪hero发布了新的文献求助10
4秒前
JamesPei应助自由的氧化铝采纳,获得10
5秒前
张凡完成签到 ,获得积分10
5秒前
6秒前
6秒前
6秒前
坦率的文龙完成签到,获得积分10
6秒前
CASLSD完成签到 ,获得积分10
6秒前
8秒前
8秒前
慕青应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
Thomas发布了新的文献求助10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
蓝韵应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5050643
求助须知:如何正确求助?哪些是违规求助? 4278259
关于积分的说明 13335988
捐赠科研通 4093268
什么是DOI,文献DOI怎么找? 2240220
邀请新用户注册赠送积分活动 1246861
关于科研通互助平台的介绍 1175806