A Novel Multi-modal Population-graph based Framework for Patients of Esophageal Squamous Cell Cancer Prognostic Risk Prediction

食管癌 情态动词 食管鳞状细胞癌 鳞状细胞癌 计算机科学 图形 医学 内科学 癌症 肿瘤科 理论计算机科学 化学 高分子化学
作者
Chengyu Wu,Shuai Wang,Yaqi Wang,Chengkai Wang,Huiyu Zhou,Yatao Zhang,Qifeng Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jbhi.2024.3410543
摘要

Prognostic risk prediction is pivotal for clinicians to appraise the patient's esophageal squamous cell cancer (ESCC) progression status precisely and tailor individualized therapy treatment plans. Currently, CT-based multi-modal prognostic risk prediction methods have gradually attracted the attention of researchers for their universality, which is also able to be applied in scenarios of preoperative prognostic risk assessment in the early stages of cancer. However, much of the current work focuses only on CT images of the primary tumor, ignoring the important role that CT images of lymph nodes play in prognostic risk prediction. Additionally, it is important to consider and explore the inter-patient feature similarity in prognosis when developing models. To solve these problems, we proposed a novel multi-modal population-graph based framework leveraging CT images including primary tumor and lymph nodes combined with clinical, hematology, and radiomics data for ESCC prognostic risk prediction. A patient population graph was constructed to excavate the homogeneity and heterogeneity of inter-patient feature embedding. Moreover, a novel node-level multi-task joint loss was proposed for graph model optimization through a supervised-based task and an unsupervised-based task. Sufficient experimental results show that our model achieved state-of-the-art performance compared with other baseline models as well as the gold standard on discriminative ability, risk stratification, and clinical utility. The core code is available at https://github.com/wuchengyu123/MPGSurv.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助默默板凳采纳,获得10
2秒前
深情安青应助Liuuhhua采纳,获得30
2秒前
X_ye完成签到,获得积分20
2秒前
大气亦巧发布了新的文献求助10
2秒前
Lucas应助霸气的若菱采纳,获得10
2秒前
打打应助蛋堡采纳,获得10
2秒前
王jj发布了新的文献求助10
3秒前
壮观缘分完成签到,获得积分10
3秒前
4秒前
RJB发布了新的文献求助10
4秒前
Hello应助不吃芹菜谢谢采纳,获得10
5秒前
emmmm完成签到,获得积分10
5秒前
范12完成签到,获得积分10
5秒前
6秒前
yuzu发布了新的文献求助10
7秒前
7秒前
小二郎应助体贴半仙采纳,获得10
8秒前
乂领域应助为你博弈采纳,获得10
8秒前
9秒前
9秒前
9秒前
赘婿应助wxd采纳,获得10
10秒前
爆米花应助朝明采纳,获得10
10秒前
悲凉的老虎完成签到,获得积分10
10秒前
积极的绿竹完成签到,获得积分10
10秒前
yang关注了科研通微信公众号
11秒前
fish112发布了新的文献求助10
12秒前
大气亦巧完成签到,获得积分10
12秒前
12秒前
听风完成签到,获得积分10
12秒前
票子发布了新的文献求助10
13秒前
13秒前
Chang发布了新的文献求助10
13秒前
典雅不言发布了新的文献求助30
13秒前
14秒前
leeb发布了新的文献求助10
15秒前
优秀绮彤发布了新的文献求助10
15秒前
WangSiwei发布了新的文献求助20
15秒前
无为发布了新的文献求助10
16秒前
哈哈哈发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5393801
求助须知:如何正确求助?哪些是违规求助? 4515106
关于积分的说明 14052738
捐赠科研通 4426288
什么是DOI,文献DOI怎么找? 2431263
邀请新用户注册赠送积分活动 1423445
关于科研通互助平台的介绍 1402505