Surface and underwater acoustic target recognition using only two hydrophones based on machine learning

水听器 水下 声纳 计算机科学 声学 噪音(视频) 人工智能 语音识别 模式识别(心理学) 地质学 物理 海洋学 图像(数学)
作者
Qiankun Yu,Wen Zhang,Min Zhu,Shi Jian,Yan Liu,Shuo Liu
出处
期刊:Journal of the Acoustical Society of America [Acoustical Society of America]
卷期号:155 (6): 3606-3614
标识
DOI:10.1121/10.0026221
摘要

Surface and underwater (S/U) acoustic targets recognition is an important application of passive sonar. It is difficult to distinguish them due to the mixture of underwater target radiation noise and marine environmental noise. In previous studies, although using a single hydrophone was able to identify S/U acoustic targets, there were still a few hydrophones that had poor accuracy. In this paper, S/U acoustic targets recognition using two hydrophones based on Gradient Boosting Decision Tree is proposed, and it is first found out as high as 100% accuracy could be achieved with the implementation of SACLANT 1993 data. The real experimental data are always rare and insufficient. The big training dataset is generated using environmental information by acoustic model named KRAKEN. Simulation and experimental data used in the model are heterogeneous, and the differences between these two kinds of data are assimilated by using vertical linear array feature extraction method. The model realizes the recognition of S/U acoustic targets based on channel information besides source spectrum information. By using the combination of two hydrophones, the surface and underwater targets recognition accuracy reached 1 and 0.9384, while they are only 0.4715 and 0.5620 using a single hydrophone, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zyra发布了新的文献求助10
1秒前
明亮如松发布了新的文献求助10
2秒前
hxy关闭了hxy文献求助
2秒前
天天快乐应助认真的一刀采纳,获得10
3秒前
敏感妙竹完成签到,获得积分10
4秒前
科研通AI5应助聪明的元枫采纳,获得10
5秒前
昔我往矣完成签到 ,获得积分10
7秒前
8秒前
xin关注了科研通微信公众号
9秒前
妩媚的夜柳完成签到 ,获得积分10
10秒前
Leo_Sun完成签到,获得积分10
13秒前
Luffa完成签到,获得积分10
13秒前
14秒前
深情安青应助熊大哥采纳,获得10
14秒前
15秒前
Jino应助jyy采纳,获得200
16秒前
17秒前
奋斗又晴发布了新的文献求助200
17秒前
菠萝大菠萝完成签到,获得积分10
17秒前
科研通AI5应助Dawn采纳,获得10
17秒前
18秒前
马彦杰发布了新的文献求助10
20秒前
英姑应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
汉堡包应助科研通管家采纳,获得10
20秒前
一一应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
一一应助科研通管家采纳,获得10
20秒前
打打应助科研通管家采纳,获得10
21秒前
脑洞疼应助科研通管家采纳,获得10
21秒前
一一应助科研通管家采纳,获得10
21秒前
21秒前
今后应助科研通管家采纳,获得10
21秒前
21秒前
汉堡包应助科研通管家采纳,获得10
21秒前
Silence发布了新的文献求助10
21秒前
蜂鸟完成签到,获得积分10
21秒前
22秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Wind energy generation systems - Part 3-2: Design requirements for floating offshore wind turbines 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Functional Electrodes for Enzymatic and Microbial Electrochemical Systems 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3692707
求助须知:如何正确求助?哪些是违规求助? 3243221
关于积分的说明 9844096
捐赠科研通 2955336
什么是DOI,文献DOI怎么找? 1620176
邀请新用户注册赠送积分活动 766325
科研通“疑难数据库(出版商)”最低求助积分说明 740176