RefAI: a GPT-powered retrieval-augmented generative tool for biomedical literature recommendation and summarization

自动汇总 计算机科学 生成语法 变压器 生成模型 情报检索 人工智能 机器学习 工程类 电气工程 电压
作者
Yiming Li,Jeff Zhao,Manqi Li,Yifang Dang,Evan Y. Yu,Jianfu Li,Zenan Sun,Usama Hussein,Zefeng Wen,Ahmed Abdelhameed,Junhua Mai,Shenduo Li,Yue Yu,Xinyue Hu,Daowei Yang,Jingna Feng,Zehan Li,Jianping He,Wei Tao,Tiehang Duan
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
被引量:13
标识
DOI:10.1093/jamia/ocae129
摘要

Abstract Objectives Precise literature recommendation and summarization are crucial for biomedical professionals. While the latest iteration of generative pretrained transformer (GPT) incorporates 2 distinct modes—real-time search and pretrained model utilization—it encounters challenges in dealing with these tasks. Specifically, the real-time search can pinpoint some relevant articles but occasionally provides fabricated papers, whereas the pretrained model excels in generating well-structured summaries but struggles to cite specific sources. In response, this study introduces RefAI, an innovative retrieval-augmented generative tool designed to synergize the strengths of large language models (LLMs) while overcoming their limitations. Materials and Methods RefAI utilized PubMed for systematic literature retrieval, employed a novel multivariable algorithm for article recommendation, and leveraged GPT-4 turbo for summarization. Ten queries under 2 prevalent topics (“cancer immunotherapy and target therapy” and “LLMs in medicine”) were chosen as use cases and 3 established counterparts (ChatGPT-4, ScholarAI, and Gemini) as our baselines. The evaluation was conducted by 10 domain experts through standard statistical analyses for performance comparison. Results The overall performance of RefAI surpassed that of the baselines across 5 evaluated dimensions—relevance and quality for literature recommendation, accuracy, comprehensiveness, and reference integration for summarization, with the majority exhibiting statistically significant improvements (P-values <.05). Discussion RefAI demonstrated substantial improvements in literature recommendation and summarization over existing tools, addressing issues like fabricated papers, metadata inaccuracies, restricted recommendations, and poor reference integration. Conclusion By augmenting LLM with external resources and a novel ranking algorithm, RefAI is uniquely capable of recommending high-quality literature and generating well-structured summaries, holding the potential to meet the critical needs of biomedical professionals in navigating and synthesizing vast amounts of scientific literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ryq327发布了新的文献求助30
2秒前
2秒前
3秒前
3秒前
3秒前
clyhg发布了新的文献求助10
4秒前
6秒前
6秒前
洪山老狗发布了新的文献求助10
6秒前
April发布了新的文献求助10
7秒前
Vivi发布了新的文献求助10
8秒前
zzzkyt发布了新的文献求助10
9秒前
无花果应助ww采纳,获得10
9秒前
认真飞瑶发布了新的文献求助10
9秒前
洋洋发布了新的文献求助10
10秒前
zkyyinf_zero完成签到,获得积分10
10秒前
张静枝发布了新的文献求助10
10秒前
NexusExplorer应助过pass采纳,获得10
11秒前
11秒前
KD关闭了KD文献求助
11秒前
12秒前
13秒前
科研通AI5应助麻师长采纳,获得10
15秒前
LZQ应助喝杯水再走采纳,获得10
16秒前
16秒前
16秒前
李Sir发布了新的文献求助10
17秒前
17秒前
天线宝宝完成签到 ,获得积分10
18秒前
丘比特应助April采纳,获得10
19秒前
赵小天完成签到,获得积分10
19秒前
上官若男应助坚强的初夏采纳,获得10
19秒前
ww发布了新的文献求助10
20秒前
猪猪侠发布了新的文献求助10
21秒前
上官若男应助feng采纳,获得10
21秒前
FashionBoy应助明知欢喜采纳,获得10
21秒前
安静的瑾瑜完成签到 ,获得积分10
21秒前
宣以晴完成签到,获得积分10
22秒前
洋洋发布了新的文献求助10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967654
求助须知:如何正确求助?哪些是违规求助? 3512812
关于积分的说明 11165110
捐赠科研通 3247884
什么是DOI,文献DOI怎么找? 1794027
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804528