Cross-contrast mutual fusion network for joint MRI reconstruction and super-resolution

对比度(视觉) 人工智能 接头(建筑物) 融合 计算机科学 计算机视觉 分辨率(逻辑) 模式识别(心理学) 工程类 语言学 哲学 建筑工程
作者
Yue Ding,Tao Zhou,Lei Xiang,Ye Wu
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:154: 110599-110599 被引量:1
标识
DOI:10.1016/j.patcog.2024.110599
摘要

Magnetic Resonance Imaging (MRI) is a widely used medical imaging technique that has become an essential tool for diagnosing various diseases and visualizing internal structures and tissues in the human body. MRI reconstruction and super-resolution are two techniques that can enhance image quality and accelerate the imaging process. However, current methods perform these tasks independently and fail to consider the correlations between them. Additionally, multi-contrast SR methods typically concatenate features from different contrasts without considering their correlation. In this paper, we propose a novel Cross-contrast Mutual Fusion Network (CMF-Net) that performs joint MRI reconstruction and super-resolution by enabling mutual propagation of feature representations between the two tasks. The CMF-Net framework consists of two stages: the first stage focuses on fusing multi-contrast features, while the second stage aims to learn task-specific information for joint MRI reconstruction and super-resolution. We propose a Multi-contrast Feature Aggregation (MFA) module to facilitate the integration of multi-contrast features. This module captures multi-scale information from auxiliary contrast to enhance the feature representation's capability. Furthermore, a Multi-task Mutual Fusion (MMF) module is presented to integrate task-specific features, which explores the correlation between the two tasks to improve MR super-resolution performance. We evaluate the proposed CMF-Net approach on two public MR datasets. Quantitative and qualitative results demonstrate that our CMF-Net outperforms other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
95发布了新的文献求助10
1秒前
小情绪应助老实的百招采纳,获得10
1秒前
1秒前
1秒前
兴奋的曲奇完成签到,获得积分10
1秒前
科研小菜鸡完成签到,获得积分20
2秒前
旷野发布了新的文献求助10
2秒前
2秒前
2秒前
小苏苏完成签到,获得积分10
2秒前
科研副本完成签到,获得积分10
3秒前
科研通AI5应助SSR采纳,获得10
3秒前
安寒发布了新的文献求助10
3秒前
WZQ发布了新的文献求助10
4秒前
gsd发布了新的文献求助20
4秒前
4秒前
zhhhhh完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
NexusExplorer应助神勇的白竹采纳,获得10
5秒前
丘比特应助阿龙采纳,获得10
5秒前
刘春林完成签到,获得积分10
5秒前
5秒前
金子俊关注了科研通微信公众号
5秒前
6秒前
6秒前
7秒前
7秒前
7秒前
踏实的绝悟完成签到 ,获得积分10
7秒前
小苏苏发布了新的文献求助10
7秒前
7秒前
小马甲应助文献狂人采纳,获得10
8秒前
英姑应助zhhhhh采纳,获得10
9秒前
7777juju完成签到,获得积分10
9秒前
安寒完成签到,获得积分10
9秒前
钉钉发布了新的文献求助50
9秒前
Connie完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Wolbachia-mediated fitness enhancement and reproductive manipulation in the South American tomato pinworm, Tuta absoluta 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5098963
求助须知:如何正确求助?哪些是违规求助? 4311031
关于积分的说明 13433121
捐赠科研通 4138388
什么是DOI,文献DOI怎么找? 2267214
邀请新用户注册赠送积分活动 1270282
关于科研通互助平台的介绍 1206556