Cross-contrast mutual fusion network for joint MRI reconstruction and super-resolution

对比度(视觉) 人工智能 接头(建筑物) 融合 计算机科学 计算机视觉 分辨率(逻辑) 模式识别(心理学) 工程类 语言学 哲学 建筑工程
作者
Yue Ding,Tao Zhou,Lei Xiang,Ye Wu
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:154: 110599-110599 被引量:1
标识
DOI:10.1016/j.patcog.2024.110599
摘要

Magnetic Resonance Imaging (MRI) is a widely used medical imaging technique that has become an essential tool for diagnosing various diseases and visualizing internal structures and tissues in the human body. MRI reconstruction and super-resolution are two techniques that can enhance image quality and accelerate the imaging process. However, current methods perform these tasks independently and fail to consider the correlations between them. Additionally, multi-contrast SR methods typically concatenate features from different contrasts without considering their correlation. In this paper, we propose a novel Cross-contrast Mutual Fusion Network (CMF-Net) that performs joint MRI reconstruction and super-resolution by enabling mutual propagation of feature representations between the two tasks. The CMF-Net framework consists of two stages: the first stage focuses on fusing multi-contrast features, while the second stage aims to learn task-specific information for joint MRI reconstruction and super-resolution. We propose a Multi-contrast Feature Aggregation (MFA) module to facilitate the integration of multi-contrast features. This module captures multi-scale information from auxiliary contrast to enhance the feature representation's capability. Furthermore, a Multi-task Mutual Fusion (MMF) module is presented to integrate task-specific features, which explores the correlation between the two tasks to improve MR super-resolution performance. We evaluate the proposed CMF-Net approach on two public MR datasets. Quantitative and qualitative results demonstrate that our CMF-Net outperforms other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助好蓝采纳,获得10
1秒前
22222发布了新的文献求助10
1秒前
共享精神应助Ran采纳,获得10
2秒前
chenhongyan完成签到 ,获得积分10
3秒前
李健应助合适苗条采纳,获得10
3秒前
Ava应助搬砖美少女采纳,获得10
3秒前
3秒前
追梦完成签到,获得积分10
3秒前
wyx514发布了新的文献求助10
3秒前
科研人完成签到,获得积分20
4秒前
浮游应助唯手熟尔采纳,获得10
4秒前
pigzhu完成签到,获得积分10
4秒前
领导范儿应助唯手熟尔采纳,获得10
4秒前
贪玩浩轩完成签到 ,获得积分10
4秒前
5秒前
FAST完成签到,获得积分10
5秒前
5秒前
5秒前
hui发布了新的文献求助10
5秒前
烤鸭本鸭完成签到,获得积分10
6秒前
小桃子发布了新的文献求助10
6秒前
YYH发布了新的文献求助10
6秒前
7秒前
8秒前
ShyerC完成签到,获得积分10
8秒前
8秒前
科研人发布了新的文献求助10
8秒前
靓丽的熠彤完成签到 ,获得积分10
9秒前
10秒前
东木雨完成签到 ,获得积分10
10秒前
huy发布了新的文献求助10
10秒前
heizbimawan完成签到,获得积分20
11秒前
11秒前
光亮的冷菱完成签到,获得积分10
11秒前
11秒前
凡华完成签到,获得积分10
12秒前
12秒前
陶毅发布了新的文献求助10
13秒前
CipherSage应助虚幻采枫采纳,获得10
13秒前
JamesPei应助小为采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261822
求助须知:如何正确求助?哪些是违规求助? 4422960
关于积分的说明 13768092
捐赠科研通 4297447
什么是DOI,文献DOI怎么找? 2357968
邀请新用户注册赠送积分活动 1354348
关于科研通互助平台的介绍 1315454