Cross-contrast mutual fusion network for joint MRI reconstruction and super-resolution

对比度(视觉) 人工智能 接头(建筑物) 融合 计算机科学 计算机视觉 分辨率(逻辑) 模式识别(心理学) 工程类 语言学 哲学 建筑工程
作者
Yue Ding,Tao Zhou,Lei Xiang,Ye Wu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:154: 110599-110599 被引量:1
标识
DOI:10.1016/j.patcog.2024.110599
摘要

Magnetic Resonance Imaging (MRI) is a widely used medical imaging technique that has become an essential tool for diagnosing various diseases and visualizing internal structures and tissues in the human body. MRI reconstruction and super-resolution are two techniques that can enhance image quality and accelerate the imaging process. However, current methods perform these tasks independently and fail to consider the correlations between them. Additionally, multi-contrast SR methods typically concatenate features from different contrasts without considering their correlation. In this paper, we propose a novel Cross-contrast Mutual Fusion Network (CMF-Net) that performs joint MRI reconstruction and super-resolution by enabling mutual propagation of feature representations between the two tasks. The CMF-Net framework consists of two stages: the first stage focuses on fusing multi-contrast features, while the second stage aims to learn task-specific information for joint MRI reconstruction and super-resolution. We propose a Multi-contrast Feature Aggregation (MFA) module to facilitate the integration of multi-contrast features. This module captures multi-scale information from auxiliary contrast to enhance the feature representation's capability. Furthermore, a Multi-task Mutual Fusion (MMF) module is presented to integrate task-specific features, which explores the correlation between the two tasks to improve MR super-resolution performance. We evaluate the proposed CMF-Net approach on two public MR datasets. Quantitative and qualitative results demonstrate that our CMF-Net outperforms other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
可爱的函函应助奕霖采纳,获得10
2秒前
3秒前
老实凝蕊发布了新的文献求助10
4秒前
漂亮的战斗机完成签到 ,获得积分10
4秒前
Ava应助无界采纳,获得10
4秒前
5秒前
biubiu完成签到,获得积分20
5秒前
1762120发布了新的文献求助10
5秒前
今后应助淡淡诗柳采纳,获得10
6秒前
zenizeni完成签到,获得积分10
6秒前
7秒前
郭海涛发布了新的文献求助10
8秒前
9秒前
丸子发布了新的文献求助30
10秒前
豆4799完成签到,获得积分10
12秒前
善学以致用应助dmq采纳,获得10
13秒前
英姑应助JL采纳,获得10
13秒前
XJYXJY完成签到,获得积分10
14秒前
丘比特应助xk采纳,获得10
14秒前
16秒前
18秒前
CH完成签到,获得积分10
19秒前
yu完成签到,获得积分10
20秒前
孙阳阳完成签到 ,获得积分10
20秒前
方方发布了新的文献求助10
20秒前
21秒前
SS发布了新的文献求助10
21秒前
ya完成签到,获得积分10
22秒前
Leo发布了新的文献求助10
22秒前
22秒前
彬彬完成签到,获得积分10
22秒前
丸子完成签到,获得积分20
24秒前
25秒前
dmq发布了新的文献求助10
26秒前
Aprilapple完成签到,获得积分10
26秒前
26秒前
华仔应助tzy采纳,获得10
27秒前
量子星尘发布了新的文献求助10
28秒前
28秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449271
求助须知:如何正确求助?哪些是违规求助? 4557461
关于积分的说明 14263571
捐赠科研通 4480503
什么是DOI,文献DOI怎么找? 2454464
邀请新用户注册赠送积分活动 1445194
关于科研通互助平台的介绍 1420969