A novel transfer learning strategy for wind power prediction based on TimesNet-GRU architecture

学习迁移 人工智能 风力发电 机器学习 领域(数学) 深度学习 计算机科学 时间序列 数据建模 预测建模 工程类 数学 数据库 电气工程 纯数学
作者
Dan Li,Yue Hu,Baohua Yang,Zeren Fang,Yunyan Liang,Shuai He
出处
期刊:Journal of Renewable and Sustainable Energy [American Institute of Physics]
卷期号:16 (3)
标识
DOI:10.1063/5.0200518
摘要

Currently, data-driven deep learning models are widely applied in the field of wind power prediction. However, when historical data are insufficient, deep learning models struggle to exhibit satisfactory predictive performance. In order to overcome the issue of limited training data for new wind farms, this study proposes a novel transfer learning strategy to address the challenge of less-sample learning in short-term wind power prediction. The research is conducted in two stages. In the pre-training stage, the TimesNet-GRU prediction model is established using data from a source wind farm. Parallel TimesNet modules are employed to extract multi-period features from various input feature sequences, followed by the extraction of long- and short-term features from the time series through gate recurrent unit (GRU). In the transfer learning stage, an effective transfer strategy is designed to freeze and retrain certain parameters of the TimesNet-GRU, thereby constructing a prediction model for the target wind farm. To validate the effectiveness of this approach, the results from testing with actual data from five wind farms in northwest China demonstrate that the proposed method exhibits significant advantages over models without transfer learning as explored in this study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
sd3km发布了新的文献求助30
1秒前
1秒前
bkagyin应助冰激凌采纳,获得10
1秒前
充电宝应助champion采纳,获得10
1秒前
1秒前
2秒前
科研通AI6应助科研八戒采纳,获得10
3秒前
乐乐应助嘻嘻采纳,获得30
3秒前
精神小伙完成签到 ,获得积分10
3秒前
4秒前
西瓜头子完成签到,获得积分10
4秒前
xiaoyuan完成签到,获得积分10
4秒前
领导范儿应助zqy采纳,获得10
4秒前
樊星完成签到,获得积分10
5秒前
小林发布了新的文献求助20
5秒前
5秒前
科研懒狗发布了新的文献求助10
5秒前
5秒前
杜11发布了新的文献求助10
5秒前
Ch_7完成签到,获得积分10
5秒前
hululu完成签到,获得积分10
6秒前
满意小蘑菇关注了科研通微信公众号
6秒前
6秒前
7秒前
皇甫锾铬发布了新的文献求助10
7秒前
jeronimo发布了新的文献求助200
7秒前
whj完成签到,获得积分10
7秒前
万能图书馆应助Helen采纳,获得10
8秒前
key完成签到,获得积分10
8秒前
8秒前
8秒前
Belegendary发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
9秒前
Lancet完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624579
求助须知:如何正确求助?哪些是违规求助? 4710376
关于积分的说明 14950345
捐赠科研通 4778512
什么是DOI,文献DOI怎么找? 2553318
邀请新用户注册赠送积分活动 1515240
关于科研通互助平台的介绍 1475577