血管生成
纳米载体
伤口愈合
癌症研究
血管生成
川地31
细胞生物学
材料科学
医学
免疫学
生物
干细胞
药物输送
纳米技术
祖细胞
作者
Yue Wang,Jinjin Wu,Jingjing Feng,Baohua Xu,Yuting Niu,Yunfei Zheng
标识
DOI:10.1021/acsami.4c03598
摘要
Wound healing is a complex challenge that demands urgent attention in the clinical realm. Efficient angiogenesis is a pivotal factor in promoting wound healing. microRNA-146a (miR-146a) inhibitor has angiogenic potential in the periodontal ligament. However, free microRNAs (miRNAs) are poorly delivered into cells due to their limited tissue specificity and low intracellular delivery efficiency. To address this hurdle, we developed a nanocarrier for targeted delivery of the miR-146a inhibitor into endothelial cells. It is composed of a polyethylenimine (PEI)-modified mesoporous silica nanoparticle (MSN) core and a pentapeptide (YIGSR) layer that recognizes endothelial cells. In vitro, we defined that the miR-146a inhibitor and adiponectin (ADP) can modulate angiogenesis and the remodeling of periodontal tissues by activating the ERK and Akt signaling pathways. Then, we confirm the specificity of YIGSR to endothelial cells, and importantly, the nanocarrier effectively delivers the miR-146a inhibitor into endothelial cells, promoting angiogenesis. In a C57 mouse skin wound model, the miR-146a inhibitor is successfully delivered into endothelial cells at the wound site using the nanocarrier, resulting in the formation of new blood vessels with strong CD31 expression. Additionally, no significant differences are found in the expression levels of inflammatory markers interleukin-6 and tumor necrosis factor-α. This outcome not only brings new strategies for angiogenesis but also exhibits broader implications for bone remodeling and wound healing. The breakthrough holds significance for future research and clinical interventions.
科研通智能强力驱动
Strongly Powered by AbleSci AI