Parallel Feature Enhancement and Adaptive Weighted Feature Fusion for Semantic Segmentation

特征(语言学) 计算机科学 分割 模式识别(心理学) 融合 人工智能 语义特征 语言学 哲学
作者
Shilong Li,Jianxin Ma,Zhisheng Cui,Yongcan Zhao,Miaohui Zhang
出处
期刊:Digital Signal Processing [Elsevier BV]
卷期号:151: 104545-104545
标识
DOI:10.1016/j.dsp.2024.104545
摘要

To tackle the challenges posed by the insensitivity of current multi-scale networks to image detailed information and their limited capacity to model contextual relationships, our paper proposes a novel semantic segmentation network called LEFNet. It is based on Parallel Feature Enhancement (PFE) and Adaptive Weighted Feature Fusion (AWFF). In the coding stage, the PFE module performs posterior enhancement of multi-scale features by Detail Sharpening Attention (DSA) and High-level Dilation Fusion (HDF) methods. The DSA guides the learning of detailed information in low-level features. The HDF broadens the perceptual field, enabling the acquisition of richer high-level features. In the decoding stage, the AWFF module supersedes the conventional feature fusion methods. The AWFF module constructs perceptual factors for each multi-scale feature map, enabling weighted learning of features. It emphasizes features with stronger semantic information, making them more decisive in pixel classification. It integrates features more reasonably based on the relevance of global contextual information, fully releasing the expressive potential of encoded features. Our method achieves mIoU scores of 82.8%, 49.3%, and 45.4% on the Cityscapes, ADE 20K, and COCO-Stuff 164K datasets, respectively, reaching an advanced level on popular benchmarks. The experimental results show that LEFNet alleviates the challenge of insensitivity of multi-scale networks to image detailed information, improves its ability to model contextual relationships, and significantly improves segmentation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cao完成签到 ,获得积分10
刚刚
杨子墨完成签到,获得积分20
1秒前
XM关闭了XM文献求助
2秒前
2秒前
凡在关注了科研通微信公众号
3秒前
3秒前
蔡浩宇发布了新的文献求助10
4秒前
枫丶发布了新的文献求助10
5秒前
wt完成签到,获得积分10
5秒前
5秒前
5秒前
李健的小迷弟应助Yanyu采纳,获得20
6秒前
沉默的觅风完成签到 ,获得积分10
6秒前
6秒前
6秒前
希望天下0贩的0应助Pittes采纳,获得10
7秒前
7秒前
阿哇发布了新的文献求助10
8秒前
万能图书馆应助liangliang采纳,获得30
8秒前
科研小白完成签到,获得积分20
8秒前
浮游应助依然的风暴采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得30
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
大霞应助科研通管家采纳,获得30
11秒前
浮游应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
无花果应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5181974
求助须知:如何正确求助?哪些是违规求助? 4368782
关于积分的说明 13604227
捐赠科研通 4220207
什么是DOI,文献DOI怎么找? 2314547
邀请新用户注册赠送积分活动 1313259
关于科研通互助平台的介绍 1261945