清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Parallel Feature Enhancement and Adaptive Weighted Feature Fusion for Semantic Segmentation

特征(语言学) 计算机科学 分割 模式识别(心理学) 融合 人工智能 语义特征 语言学 哲学
作者
Shilong Li,Jianxin Ma,Zhisheng Cui,Yongcan Zhao,Miaohui Zhang
出处
期刊:Digital Signal Processing [Elsevier BV]
卷期号:151: 104545-104545
标识
DOI:10.1016/j.dsp.2024.104545
摘要

To tackle the challenges posed by the insensitivity of current multi-scale networks to image detailed information and their limited capacity to model contextual relationships, our paper proposes a novel semantic segmentation network called LEFNet. It is based on Parallel Feature Enhancement (PFE) and Adaptive Weighted Feature Fusion (AWFF). In the coding stage, the PFE module performs posterior enhancement of multi-scale features by Detail Sharpening Attention (DSA) and High-level Dilation Fusion (HDF) methods. The DSA guides the learning of detailed information in low-level features. The HDF broadens the perceptual field, enabling the acquisition of richer high-level features. In the decoding stage, the AWFF module supersedes the conventional feature fusion methods. The AWFF module constructs perceptual factors for each multi-scale feature map, enabling weighted learning of features. It emphasizes features with stronger semantic information, making them more decisive in pixel classification. It integrates features more reasonably based on the relevance of global contextual information, fully releasing the expressive potential of encoded features. Our method achieves mIoU scores of 82.8%, 49.3%, and 45.4% on the Cityscapes, ADE 20K, and COCO-Stuff 164K datasets, respectively, reaching an advanced level on popular benchmarks. The experimental results show that LEFNet alleviates the challenge of insensitivity of multi-scale networks to image detailed information, improves its ability to model contextual relationships, and significantly improves segmentation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昂无敌完成签到,获得积分10
11秒前
tty应助科研通管家采纳,获得30
14秒前
徐恭完成签到 ,获得积分10
19秒前
忘忧Aquarius完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
24秒前
ceeray23发布了新的文献求助20
44秒前
lili关注了科研通微信公众号
46秒前
skittles完成签到,获得积分10
51秒前
1分钟前
贰鸟应助jueshadi采纳,获得10
1分钟前
naczx完成签到,获得积分10
1分钟前
lili发布了新的文献求助10
1分钟前
Owen应助细心的语蓉采纳,获得10
1分钟前
小西完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
知行者完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
qyang完成签到 ,获得积分10
2分钟前
古炮完成签到,获得积分10
2分钟前
Tales完成签到 ,获得积分10
3分钟前
万能图书馆应助haralee采纳,获得10
3分钟前
mzhang2完成签到 ,获得积分10
3分钟前
忧郁的火车完成签到,获得积分10
3分钟前
Davidjin完成签到,获得积分10
3分钟前
房天川完成签到 ,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
Hillson完成签到,获得积分10
4分钟前
科研通AI5应助北极光采纳,获得30
4分钟前
火星上惜天完成签到 ,获得积分10
4分钟前
woods完成签到,获得积分10
4分钟前
4分钟前
吗喽完成签到,获得积分20
4分钟前
吗喽发布了新的文献求助10
5分钟前
lod完成签到,获得积分10
5分钟前
5分钟前
上官若男应助吗喽采纳,获得10
5分钟前
haralee发布了新的文献求助10
5分钟前
推土机爱学习完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612539
求助须知:如何正确求助?哪些是违规求助? 4017723
关于积分的说明 12436648
捐赠科研通 3699876
什么是DOI,文献DOI怎么找? 2040404
邀请新用户注册赠送积分活动 1073202
科研通“疑难数据库(出版商)”最低求助积分说明 956894