Parallel Feature Enhancement and Adaptive Weighted Feature Fusion for Semantic Segmentation

特征(语言学) 计算机科学 分割 模式识别(心理学) 融合 人工智能 语义特征 语言学 哲学
作者
Shilong Li,Jianxin Ma,Zhisheng Cui,Yongcan Zhao,Miaohui Zhang
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:151: 104545-104545
标识
DOI:10.1016/j.dsp.2024.104545
摘要

To tackle the challenges posed by the insensitivity of current multi-scale networks to image detailed information and their limited capacity to model contextual relationships, our paper proposes a novel semantic segmentation network called LEFNet. It is based on Parallel Feature Enhancement (PFE) and Adaptive Weighted Feature Fusion (AWFF). In the coding stage, the PFE module performs posterior enhancement of multi-scale features by Detail Sharpening Attention (DSA) and High-level Dilation Fusion (HDF) methods. The DSA guides the learning of detailed information in low-level features. The HDF broadens the perceptual field, enabling the acquisition of richer high-level features. In the decoding stage, the AWFF module supersedes the conventional feature fusion methods. The AWFF module constructs perceptual factors for each multi-scale feature map, enabling weighted learning of features. It emphasizes features with stronger semantic information, making them more decisive in pixel classification. It integrates features more reasonably based on the relevance of global contextual information, fully releasing the expressive potential of encoded features. Our method achieves mIoU scores of 82.8%, 49.3%, and 45.4% on the Cityscapes, ADE 20K, and COCO-Stuff 164K datasets, respectively, reaching an advanced level on popular benchmarks. The experimental results show that LEFNet alleviates the challenge of insensitivity of multi-scale networks to image detailed information, improves its ability to model contextual relationships, and significantly improves segmentation performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
哈哈哈发布了新的文献求助10
1秒前
zik应助呱呱采纳,获得20
1秒前
张健发布了新的文献求助10
1秒前
2秒前
看文献的高光谱完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
xe发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
5秒前
5秒前
6秒前
6秒前
Ava应助含糊的电源采纳,获得10
6秒前
刘总完成签到 ,获得积分10
6秒前
研友_n2r2Kn发布了新的文献求助10
7秒前
7秒前
典雅的俊驰完成签到,获得积分10
7秒前
jingmishensi发布了新的文献求助20
7秒前
8秒前
默默熊猫完成签到,获得积分10
8秒前
8秒前
8秒前
拉普拉斯妖完成签到,获得积分10
9秒前
美丽思山发布了新的文献求助10
9秒前
小玉米完成签到 ,获得积分10
9秒前
9秒前
yyl发布了新的文献求助10
10秒前
热心的诗蕊完成签到,获得积分10
10秒前
c7发布了新的文献求助10
10秒前
11秒前
11秒前
猫寂先森完成签到 ,获得积分10
11秒前
共享精神应助小彭采纳,获得10
11秒前
wei完成签到,获得积分10
11秒前
吴吴完成签到,获得积分10
12秒前
科目三应助等你下课采纳,获得10
12秒前
YJ发布了新的文献求助10
13秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587104
求助须知:如何正确求助?哪些是违规求助? 4670242
关于积分的说明 14781891
捐赠科研通 4621991
什么是DOI,文献DOI怎么找? 2531119
邀请新用户注册赠送积分活动 1499924
关于科研通互助平台的介绍 1468015