Parallel Feature Enhancement and Adaptive Weighted Feature Fusion for Semantic Segmentation

特征(语言学) 计算机科学 分割 模式识别(心理学) 融合 人工智能 语义特征 哲学 语言学
作者
Shilong Li,Jianxin Ma,Zhisheng Cui,Yongcan Zhao,Miaohui Zhang
出处
期刊:Digital Signal Processing [Elsevier BV]
卷期号:151: 104545-104545
标识
DOI:10.1016/j.dsp.2024.104545
摘要

To tackle the challenges posed by the insensitivity of current multi-scale networks to image detailed information and their limited capacity to model contextual relationships, our paper proposes a novel semantic segmentation network called LEFNet. It is based on Parallel Feature Enhancement (PFE) and Adaptive Weighted Feature Fusion (AWFF). In the coding stage, the PFE module performs posterior enhancement of multi-scale features by Detail Sharpening Attention (DSA) and High-level Dilation Fusion (HDF) methods. The DSA guides the learning of detailed information in low-level features. The HDF broadens the perceptual field, enabling the acquisition of richer high-level features. In the decoding stage, the AWFF module supersedes the conventional feature fusion methods. The AWFF module constructs perceptual factors for each multi-scale feature map, enabling weighted learning of features. It emphasizes features with stronger semantic information, making them more decisive in pixel classification. It integrates features more reasonably based on the relevance of global contextual information, fully releasing the expressive potential of encoded features. Our method achieves mIoU scores of 82.8%, 49.3%, and 45.4% on the Cityscapes, ADE 20K, and COCO-Stuff 164K datasets, respectively, reaching an advanced level on popular benchmarks. The experimental results show that LEFNet alleviates the challenge of insensitivity of multi-scale networks to image detailed information, improves its ability to model contextual relationships, and significantly improves segmentation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助标致的白桃采纳,获得10
2秒前
4秒前
4秒前
5秒前
5秒前
没有昵称发布了新的文献求助10
8秒前
Aqua发布了新的文献求助20
8秒前
兔子完成签到,获得积分10
8秒前
Owen应助bbdd2334采纳,获得10
9秒前
lzx发布了新的文献求助10
10秒前
林临林应助张浩毅采纳,获得10
10秒前
荷包蛋发布了新的文献求助10
11秒前
存慎完成签到 ,获得积分10
12秒前
jhp完成签到 ,获得积分10
12秒前
13秒前
热心市民小红花应助ZSW采纳,获得10
13秒前
凡迪亚比应助李锐采纳,获得30
15秒前
埃特纳氏完成签到 ,获得积分10
16秒前
英俊的铭应助Aqua采纳,获得10
16秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
漂亮的雪糕完成签到,获得积分10
20秒前
知许解夏应助李锐采纳,获得10
21秒前
知许解夏应助李锐采纳,获得10
21秒前
Merlin应助李锐采纳,获得30
21秒前
菠萝吹雪完成签到,获得积分10
22秒前
22秒前
25秒前
27秒前
Jzhaoc580完成签到 ,获得积分10
28秒前
zx发布了新的文献求助10
30秒前
goo发布了新的文献求助10
31秒前
脑洞疼应助缓慢安柏采纳,获得10
31秒前
31秒前
李牛牛完成签到,获得积分10
32秒前
Jane发布了新的文献求助10
33秒前
一生所爱完成签到,获得积分10
36秒前
guozizi发布了新的文献求助30
37秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959179
求助须知:如何正确求助?哪些是违规求助? 3505472
关于积分的说明 11124101
捐赠科研通 3237190
什么是DOI,文献DOI怎么找? 1789003
邀请新用户注册赠送积分活动 871507
科研通“疑难数据库(出版商)”最低求助积分说明 802824