DSC-Recon: Dual-Stage Complementary 4D Organ Reconstruction from X-ray Image Sequence for Intraoperative Fusion

计算机科学 多边形网格 人工智能 特征(语言学) 插值(计算机图形学) 计算机视觉 迭代重建 序列(生物学) 阶段(地层学) 模式识别(心理学) 图像(数学) 计算机图形学(图像) 古生物学 哲学 语言学 生物 遗传学
作者
Haixiao Geng,Jingfan Fan,Shuo Yang,Sigeng Chen,Deqiang Xiao,Danni Ai,Tianyu Fu,Hong Song,Kai Yuan,Feng Duan,Yongtian Wang,Jian Yang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tmi.2024.3406876
摘要

Accurately reconstructing 4D critical organs contributes to the visual guidance in X-ray image-guided interventional operation. Current methods estimate intraoperative dynamic meshes by refining a static initial organ mesh from the semantic information in the single-frame X-ray images. However, these methods fall short of reconstructing an accurate and smooth organ sequence due to the distinct respiratory patterns between the initial mesh and X-ray image. To overcome this limitation, we propose a novel dual-stage complementary 4D organ reconstruction (DSC-Recon) model for recovering dynamic organ meshes by utilizing the preoperative and intraoperative data with different respiratory patterns. DSC-Recon is structured as a dual-stage framework: 1) The first stage focuses on addressing a flexible interpolation network applicable to multiple respiratory patterns, which could generate dynamic shape sequences between any pair of preoperative 3D meshes segmented from CT scans. 2) In the second stage, we present a deformation network to take the generated dynamic shape sequence as the initial prior and explore the discriminate feature (i.e., target organ areas and meaningful motion information) in the intraoperative X-ray images, predicting the deformed mesh by introducing a designed feature mapping pipeline integrated into the initialized shape refinement process. Experiments on simulated and clinical datasets demonstrate the superiority of our method over state-of-the-art methods in both quantitative and qualitative aspects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liu发布了新的文献求助10
刚刚
完美世界应助咳咳采纳,获得10
1秒前
1秒前
哒哒完成签到,获得积分10
1秒前
李健春完成签到 ,获得积分10
1秒前
ding应助小文采纳,获得10
1秒前
1秒前
2秒前
99完成签到,获得积分10
2秒前
隐形曼青应助迅速的夏兰采纳,获得20
2秒前
Muse完成签到 ,获得积分10
3秒前
圈圈发布了新的文献求助10
3秒前
打打应助时尚的蚂蚁采纳,获得10
4秒前
贾文斌完成签到,获得积分10
4秒前
chinning发布了新的文献求助10
4秒前
完美世界应助wangn采纳,获得10
5秒前
Mid完成签到,获得积分20
5秒前
共享精神应助Morgenstern_ZH采纳,获得10
5秒前
5秒前
5秒前
搞怪画笔完成签到 ,获得积分10
5秒前
皇城有饭局完成签到,获得积分10
5秒前
lvanlvan完成签到,获得积分10
5秒前
哲999发布了新的文献求助10
6秒前
Jadie完成签到,获得积分10
6秒前
6秒前
morlison发布了新的文献求助10
6秒前
6秒前
无花果应助佳佳采纳,获得10
6秒前
无花果应助nn采纳,获得10
7秒前
置默完成签到,获得积分10
7秒前
gww完成签到,获得积分20
8秒前
zhmyjk发布了新的文献求助60
8秒前
MADKAI发布了新的文献求助20
8秒前
8秒前
隐形曼青应助gaos采纳,获得10
8秒前
侦察兵发布了新的文献求助10
9秒前
JamesPei应助科研小小小白采纳,获得10
9秒前
9秒前
yaqin@9909完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759