Three-Dimensional Magnetotelluric Forward Modeling Through Deep Learning

大地电磁法 深度学习 计算机科学 人工智能 地质学 遥感 地球物理学 电气工程 电阻率和电导率 工程类
作者
Xuben Wang,Peifan Jiang,Fei Deng,Shuang Wang,Rui Yang,Chongxin Yuan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:2
标识
DOI:10.1109/tgrs.2024.3401587
摘要

For a long time, the 2-D and 3-D Magnetotelluric (MT) forward modeling is mainly accomplished by computational methods. Traditional methods are time consuming due to the large amounts of discrete grids and slow solution of the matrix equation. Therefore, finding a fast forward modeling algorithm remains a major concern. In recent years, deep learning has provided new ways to accomplish this goal. Most existing deep learning-based MT forward modeling are performed on 2-D data, and there is a lack of research on the feasibility of 3-D problems. this paper constructs a large-scale 3-D MT dataset; employs a deep neural network suitable for 3-D MT data patterns, and improving the training efficiency through a transfer learning strategy for similar tasks, that can predict the apparent resistivity and phases in different polarization directions, and realizes fast and high-precision 3-D MT deep learning forward modeling. The experimental quantitative metrics show that the mean relative errors of apparent resistivity and phase are 0.6042% and 0.2423%, respectively, and the mean absolute errors are 1.6726 and 0.0994, respectively. When applying the method to geoelectric models that are more complex than the training set, accurate forward modeling results validate its generalization ability. The research may provide methodological and data support for larger-scale 3-D MT forward modeling in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1661完成签到,获得积分10
刚刚
1秒前
mayberichard完成签到,获得积分20
1秒前
echoxq发布了新的文献求助10
3秒前
张先森完成签到,获得积分10
4秒前
kehe!完成签到 ,获得积分0
4秒前
随风完成签到,获得积分10
6秒前
搜集达人应助冬瓜采纳,获得10
6秒前
7秒前
7秒前
9秒前
沐风发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
小赵完成签到,获得积分10
12秒前
picapica668应助Supreme采纳,获得10
13秒前
XuchaoD发布了新的文献求助10
15秒前
NexusExplorer应助机灵的如柏采纳,获得30
16秒前
16秒前
昏睡的半鬼完成签到 ,获得积分10
17秒前
JUYIN完成签到,获得积分10
18秒前
21秒前
iu完成签到,获得积分10
22秒前
香蕉觅云应助愉快问枫采纳,获得10
22秒前
元谷雪应助愉快问枫采纳,获得10
22秒前
CipherSage应助愉快问枫采纳,获得10
22秒前
顾矜应助愉快问枫采纳,获得10
23秒前
上官若男应助愉快问枫采纳,获得10
23秒前
隐形曼青应助愉快问枫采纳,获得10
23秒前
bob完成签到,获得积分10
25秒前
maimu发布了新的文献求助20
26秒前
linshunan完成签到 ,获得积分10
26秒前
领导范儿应助世纪飞虎采纳,获得10
26秒前
27秒前
zewangguo完成签到,获得积分10
27秒前
Endlessway完成签到,获得积分0
28秒前
29秒前
迷你蛋黄完成签到,获得积分10
29秒前
顾矜应助醒略略采纳,获得20
30秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262680
求助须知:如何正确求助?哪些是违规求助? 2903319
关于积分的说明 8324818
捐赠科研通 2573399
什么是DOI,文献DOI怎么找? 1398249
科研通“疑难数据库(出版商)”最低求助积分说明 654044
邀请新用户注册赠送积分活动 632642