MGMS: A Modality-general and Modality-specific Learning Model using EEG and Facial Expression for Hearing-impaired Emotion Recognition

模态(人机交互) 语音识别 面部表情 脑电图 计算机科学 听力受损者 人工智能 心理学 听力学 神经科学 医学
作者
Qingzhou Wu,Mu Zhu,Wenhui Xu,Junchi Wang,Zemin Mao,Qiang Gao,Yu Song
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-11
标识
DOI:10.1109/tim.2024.3400341
摘要

Currently, most research on emotion recognition primarily relies on single-modal physiological or non-physiological methods, overlooking the complementarity of emotion representation across different modalities. Individuals with hearing impairments may experience emotional cognitive biases due to the loss of the emotional acquisition pathway associated with hearing. Therefore, this study introduces the modality-general and modality-specific (MGMS) learning model, which aims to examine the emotions of hearing-impaired individuals in four categories (fear, happy, neutral, and sad) through the fusion of electroencephalogram (EEG) and facial expression. Specifically, the differential entropy (DE) features are manually extracted from each EEG channel by different brain regions, and then the spatial information is captured by a Long Short-Term Memory (LSTM) network. In terms of facial expression, texture features and geometric features are combined which are extracted by the ResNet network and 68 facial key points, respectively. By constructing a general-specific discriminator, the modality-general and modality-specific features are separated from the two modes. Furthermore, a Transformer encoder is employed to classify the four features using a cross-entropy loss function. Experimental results demonstrate that the proposed methods achieve an average classification accuracy of 86.01% for subject-dependent classification, surpassing the respective accuracies of 65.12% for EEG and 59.86% for facial expressions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CUN完成签到,获得积分10
3秒前
李爱国应助www采纳,获得10
5秒前
6秒前
hersy完成签到,获得积分10
7秒前
8秒前
科研通AI2S应助善良黑夜采纳,获得10
8秒前
10秒前
华子黄完成签到,获得积分10
10秒前
CarryLJR发布了新的文献求助10
11秒前
蛇虫鼠蚁应助冷傲的帽子采纳,获得20
11秒前
隐形曼青应助寒冷的踏歌采纳,获得30
12秒前
夏一苒发布了新的文献求助10
14秒前
111发布了新的文献求助10
14秒前
waitstill完成签到,获得积分10
15秒前
16秒前
16秒前
大模型应助CarryLJR采纳,获得10
18秒前
你好完成签到,获得积分10
18秒前
19秒前
20秒前
bkagyin应助哈理老萝卜采纳,获得10
20秒前
DaYongDan完成签到 ,获得积分10
20秒前
无花果应助111采纳,获得10
20秒前
www发布了新的文献求助10
21秒前
ALICE完成签到,获得积分10
21秒前
21秒前
辣辣完成签到 ,获得积分20
21秒前
顾矜应助KK采纳,获得10
22秒前
Monicadd完成签到,获得积分10
22秒前
芳心纵火犯完成签到,获得积分10
23秒前
Celinewei完成签到 ,获得积分10
23秒前
李爱国应助balala采纳,获得10
24秒前
善良黑夜完成签到,获得积分20
24秒前
深情安青应助mins采纳,获得10
24秒前
Chris发布了新的文献求助10
24秒前
寒时完成签到,获得积分10
25秒前
bkagyin应助ALICE采纳,获得10
27秒前
29秒前
wjt完成签到,获得积分10
30秒前
康康要早睡完成签到,获得积分10
31秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810493
求助须知:如何正确求助?哪些是违规求助? 3354915
关于积分的说明 10373262
捐赠科研通 3071449
什么是DOI,文献DOI怎么找? 1686945
邀请新用户注册赠送积分活动 811316
科研通“疑难数据库(出版商)”最低求助积分说明 766596