RD-GCN: A Role-Based Dynamic Graph Convolutional Network for Information Diffusion Prediction

计算机科学 图形 理论计算机科学 算法
作者
Jingkai Ye,Qing Bao,Ming Xu,Jian Xu,Hongjun Qiu,Pengfei Jiao
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnse.2024.3403652
摘要

Information diffusion prediction is an important task which attempts to predict the potential users that will be affected in an information cascade. Existing studies utilize the user interactions in the diffusion graphs with past diffusion records and user relationships in social networks, and capture the structural proximity of those networks to model user similarities for diffusion prediction. However, they ignore structural similarity of the networks, namely user roles, which is of great significance. Actually, a user's future reposting behavior depends on the roles of previous participants. For instance, sometimes people may not respond to discussions of their so-so friends until a more influential friend joins in. Also, user roles change over time. In this paper, we propose a novel Role-based Dynamic Graph Convolutional Network (RD-GCN) which captures the dependencies of dynamic user roles and information diffusion, and jointly learns the two parts. Specifically, the original diffusion graph is divided into subgraphs according to timestamps and users' preferences and roles are captured from those sequential subgraphs and social networks. Also, gated mechanisms are introduced to incorporate users' different tendencies to be influenced by roles. The experiments on three public datasets demonstrate that RD-GCN significantly outperforms state-of-the-art models, verifying the effectiveness of our proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粗暴的坤完成签到 ,获得积分10
1秒前
迷路的小蚂蚁完成签到,获得积分10
1秒前
王科研完成签到,获得积分10
2秒前
zqw完成签到,获得积分10
2秒前
宋文娟完成签到,获得积分10
3秒前
科研通AI5应助Qian采纳,获得10
3秒前
zho发布了新的文献求助10
3秒前
3秒前
一路嘿嘿应助cis2014采纳,获得10
4秒前
tttt完成签到,获得积分20
4秒前
123完成签到,获得积分10
4秒前
5秒前
善学以致用应助浏阳河采纳,获得10
5秒前
Vera完成签到,获得积分10
5秒前
汤绮菱完成签到,获得积分10
6秒前
朴素青寒完成签到,获得积分10
6秒前
积极的黑猫完成签到 ,获得积分10
7秒前
7秒前
俭朴的发带完成签到,获得积分10
7秒前
Rosaline完成签到 ,获得积分10
7秒前
烟花应助小野采纳,获得10
8秒前
儒雅的绿兰完成签到 ,获得积分10
8秒前
3139813319完成签到,获得积分10
9秒前
赘婿应助Rebecca采纳,获得10
9秒前
9秒前
Rainstorm27发布了新的文献求助10
10秒前
zhang005on完成签到,获得积分10
10秒前
务实仙人掌完成签到,获得积分10
10秒前
刘稀完成签到,获得积分10
10秒前
10秒前
Qing完成签到,获得积分10
11秒前
烂漫的蜡烛完成签到 ,获得积分10
11秒前
tracer完成签到,获得积分10
11秒前
赘婿应助kk采纳,获得10
12秒前
可乐SAMA发布了新的文献求助10
12秒前
深情安青应助Waiwai采纳,获得10
12秒前
jingchao发布了新的文献求助10
13秒前
xiaowang发布了新的文献求助10
13秒前
peaceone完成签到,获得积分10
13秒前
隐形曼青应助super小萌萌采纳,获得10
14秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725665
求助须知:如何正确求助?哪些是违规求助? 3270537
关于积分的说明 9966775
捐赠科研通 2985784
什么是DOI,文献DOI怎么找? 1638024
邀请新用户注册赠送积分活动 777855
科研通“疑难数据库(出版商)”最低求助积分说明 747268