An improved risk prioritization method for propulsion system based on heterogeneous information and PageRank algorithm

计算机科学 优先次序 失效模式及影响分析 可靠性(半导体) 过程(计算) 模糊逻辑 代表(政治) 可靠性工程 数据挖掘 算法 风险分析(工程) 功率(物理) 人工智能 管理科学 操作系统 物理 政治 工程类 经济 法学 医学 量子力学 政治学
作者
Zhen Hua,Liguo Fei,Xiaochuan Jing
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:212: 118798-118798 被引量:10
标识
DOI:10.1016/j.eswa.2022.118798
摘要

Failure mode and effect analysis (FMEA) has been widely applied as a powerful reliability analysis technique to identify and eliminate system failures in various industries. Though many contributions have been made to improve the traditional FMEA, some challenges still exist. For example, how to deal with different types of risk information involved in FMEA due to the heterogeneity of risk factors. Additionally, the influence of the relationship between failure modes and the attenuation effect on the final risk priority deserves further study. Motivated by these challenges, we propose an improved risk prioritization method. First, heterogeneous information expression structures (i.e., crisp numbers, interval numbers, triangular fuzzy numbers, linguistic Z-numbers) are utilized to describe risk factors from quantitative and qualitative aspects. Then, the initial risk priority numbers (RPNs) of failure modes are determined without transforming different representation structures into a unified one. Next, the total relation influence matrix is generated considering attenuation effects. Afterward, the PageRank algorithm is extended to obtain the final risk priority by analyzing the mutual influence between failure modes and their initial RPNs simultaneously. Finally, a case study of FMEA for a shipboard medium voltage DC power system is presented to verify the effectiveness of the proposed method. The results indicate that our method can process the heterogeneous risk information more flexibly and prioritize the failure modes more reasonably.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浅梨涡完成签到 ,获得积分10
1秒前
JamesPei应助椰子熟了耶采纳,获得20
2秒前
hanyang965发布了新的文献求助10
2秒前
orixero应助喵呜采纳,获得10
2秒前
2秒前
2秒前
3秒前
en发布了新的文献求助10
3秒前
4秒前
白宝宝北北白应助氕氘氚采纳,获得10
4秒前
5秒前
进取拼搏完成签到,获得积分10
5秒前
hehsk完成签到,获得积分10
5秒前
无限鞅完成签到,获得积分20
5秒前
6秒前
DY完成签到 ,获得积分10
7秒前
郑仕完成签到,获得积分10
7秒前
7秒前
进取拼搏发布了新的文献求助10
8秒前
顺顺发布了新的文献求助10
8秒前
8秒前
在水一方应助涛涛采纳,获得10
8秒前
英姑应助义气的傲松采纳,获得10
9秒前
9秒前
哭泣蛋挞完成签到 ,获得积分10
10秒前
sweetbearm应助通~采纳,获得10
10秒前
田様应助吃饭用大碗采纳,获得10
11秒前
11秒前
12秒前
13秒前
阿斯蒂和琴酒完成签到 ,获得积分10
13秒前
珂珂发布了新的文献求助10
15秒前
15秒前
迟大猫应助我是站长才怪采纳,获得30
15秒前
16秒前
BaekHyun发布了新的文献求助10
16秒前
背后翠梅发布了新的文献求助30
16秒前
CCR发布了新的文献求助10
16秒前
su发布了新的文献求助10
18秒前
善学以致用应助钰c采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808