Machine learning approach for predicting and evaluating California bearing ratio of stabilized soil containing industrial waste

均方误差 随机森林 加州承载比 平均绝对百分比误差 支持向量机 Boosting(机器学习) 决定系数 预测建模 极限学习机 数学 统计 梯度升压 人工神经网络 相关系数 平均绝对误差 机器学习 工程类 路基 计算机科学 岩土工程 人工智能
作者
Lanh Si Ho,Van Quan Tran
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:370: 133587-133587 被引量:34
标识
DOI:10.1016/j.jclepro.2022.133587
摘要

The California bearing ratio (CBR) is one of the important indexes, which is used to represent the strength of subgrade or subbases of pavement. In general, the CBR can be determined through experiments both in the laboratory and field. However, the determination of the CBR is time and cost-consuming as well as low accuracy due to the disturbance of samples and limitations of preparation in the laboratory. Thus, this study estimates the CBR of stabilized soil using twelve machine learning techniques (6 single models and 6 hybrid models). The single models include artificial neural network (ANN), gradient boosting (GB), extreme gradient boosting (XGB), random forest (RF), support vector machine (SVM), and K-nearest neighbors (KNN), while the six hybrid models are a combination of these single models and random restart hill-climbing optimization (RRHC). Twelve models are constructed based on eleven input variables, including cement, Atterberg's limits , optimum moisture content (OMC), maximum dry density (MDD), and dust and ashes. To evaluate the performance of the proposed models, four popular statistical indexes namely mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), and determination coefficient (R 2 ) were used. The results indicate that among twelve models, four models using GB, RRHC_XGB, RRHC_RF, and RF had a high prediction accuracy (R 2 > 0.98) and outperformed than other remaining models. Among these four models, the model using RF has the highest prediction accuracy (R 2 = 0.9817, RMSE = 2.3970, MAE = 1.1682, MAPE = 0.0666). According to the result of feature importance analysis using Sklearn permutation importance, SHapley Additive exPlanation (SHAP), individual conditional expectation (ICE), and partial dependence plots-2D, cement and plasticity index (PI) are two most important variables affecting the CBR prediction of stabilized soil. Where, PI was found to be a very crucial factor, which improved the prediction ability of the models compared to the results of previous studies. The results also reveal that when cement content is larger than 2%, there is an insignificant influence of the cement on the CBR of stabilized soil. The value of PI smaller than 15% has a vital impact on the CBR for any values of cement, dust, and ashes. Furthermore, the results also indicate that dust and ash content have less effect on the CBR of stabilized soil. In summary, it can be concluded that this study provides an insightful assessment of the CBR prediction of stabilized soil, and the results of this study can fill the gap in the literature and provide practical knowledge and application on the CBR of stabilized soil.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
往徕完成签到,获得积分10
刚刚
1秒前
1秒前
牧野完成签到,获得积分10
1秒前
2秒前
赘婿应助wang采纳,获得10
2秒前
故酒应助奇葩萝卜采纳,获得10
2秒前
ding应助雨雨采纳,获得30
3秒前
雪山飞龙发布了新的文献求助10
3秒前
3秒前
zc发布了新的文献求助10
4秒前
jia_hui1009发布了新的文献求助10
4秒前
苏雨康发布了新的文献求助10
5秒前
ssc发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
故酒应助叁月二采纳,获得30
7秒前
8秒前
8秒前
小马甲应助苗玉采纳,获得10
8秒前
王菲完成签到,获得积分10
8秒前
8秒前
8秒前
xun关闭了xun文献求助
9秒前
东京下雨lin完成签到,获得积分10
9秒前
思源应助孙湛舒采纳,获得10
9秒前
10秒前
orixero应助周周采纳,获得10
10秒前
江洋大盗发布了新的文献求助10
11秒前
王菲发布了新的文献求助10
12秒前
13秒前
科研通AI2S应助Moongazer采纳,获得30
13秒前
13秒前
Colin完成签到,获得积分10
13秒前
14秒前
Chara_kara完成签到,获得积分10
14秒前
2167418960发布了新的文献求助10
14秒前
苹果安露发布了新的文献求助10
15秒前
苏雨康完成签到,获得积分10
15秒前
白斯特发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Treatise on Geochemistry 1500
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5514922
求助须知:如何正确求助?哪些是违规求助? 4608502
关于积分的说明 14511663
捐赠科研通 4544566
什么是DOI,文献DOI怎么找? 2490164
邀请新用户注册赠送积分活动 1472048
关于科研通互助平台的介绍 1443840