Mnco2o4 spinel microsphere assembled with flake structure as a cathode for high-performance zinc ion battery

尖晶石 阳极 电化学 阴极 材料科学 电池(电) 功率密度 热液循环 锂离子电池 纳米技术 电极 冶金 化学 物理 化学工程 电气工程 工程类 功率(物理) 量子力学 物理化学
作者
Nishant Yadav,Sonti Khamsanga,Soorathep Kheawhom,Jiaqian Qin,Prasit Pattananuwat
出处
期刊:Journal of energy storage [Elsevier]
卷期号:64: 107148-107148 被引量:14
标识
DOI:10.1016/j.est.2023.107148
摘要

Aqueous rechargeable zinc-ion batteries (ZIBs) with manganese-based materials as a cathode have suffered from limitations in energy density and life cycle performance. Materials for use as cathodes for ZIBs are constantly being researched in order to achieve high electrochemical performance. Herein, a spinel MnCo2O4 microsphere assembled with the interconnected micro- and nanoflake structures has been successfully synthesized via hydrothermal method. The dynamic electrochemistry properties of a zinc-ion battery with a MnCo2O4 cathode are demonstrated through the study of charge/discharge process. The constructed zinc foil anode with the MnCo2O4 cathode reveals the discharge capacity of 595.3 mAh g−1 at 0.05 A g−1. The Zn//MnCo2O4 battery achieves energy density values in the range of 714 to 207 Wh kg−1 with power density values in the range of 60 to 1200 W kg−1. The good cycle stability of 85 % retention capacity after 250 cycles at 0.2 A g−1 is reported. Additionally, the structural development during cycling at the atomic level is examined by ex-situ measurement, indicating that the activation process of MnCo2O4 was primarily developed through the development of Mn2+/Mn3+ and Co2+/Co3+ electron states, inducing the electro-capacity properties of ZIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
mammoth完成签到,获得积分10
刚刚
科研通AI5应助仄兀采纳,获得10
1秒前
1秒前
1秒前
fishhh完成签到,获得积分10
1秒前
ruxing应助胖豆采纳,获得10
2秒前
good完成签到,获得积分10
2秒前
prosperp应助科研通管家采纳,获得10
2秒前
2秒前
Akim应助科研通管家采纳,获得10
2秒前
sweetbearm应助科研通管家采纳,获得10
2秒前
1221211应助科研通管家采纳,获得10
2秒前
2秒前
liudiqiu应助科研通管家采纳,获得10
3秒前
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得30
3秒前
3秒前
欣慰友梅发布了新的文献求助10
3秒前
Serendipity应助科研通管家采纳,获得20
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
今后应助科研通管家采纳,获得10
4秒前
YDL应助科研通管家采纳,获得30
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
orixero应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
4秒前
幸福果汁完成签到,获得积分10
4秒前
5秒前
5秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762