尖晶石
阳极
电化学
阴极
材料科学
锌
电池(电)
功率密度
热液循环
锰
锂离子电池
纳米技术
电极
冶金
化学
物理
化学工程
电气工程
工程类
功率(物理)
量子力学
物理化学
作者
Nishant Yadav,Sonti Khamsanga,Soorathep Kheawhom,Jiaqian Qin,Prasit Pattananuwat
标识
DOI:10.1016/j.est.2023.107148
摘要
Aqueous rechargeable zinc-ion batteries (ZIBs) with manganese-based materials as a cathode have suffered from limitations in energy density and life cycle performance. Materials for use as cathodes for ZIBs are constantly being researched in order to achieve high electrochemical performance. Herein, a spinel MnCo2O4 microsphere assembled with the interconnected micro- and nanoflake structures has been successfully synthesized via hydrothermal method. The dynamic electrochemistry properties of a zinc-ion battery with a MnCo2O4 cathode are demonstrated through the study of charge/discharge process. The constructed zinc foil anode with the MnCo2O4 cathode reveals the discharge capacity of 595.3 mAh g−1 at 0.05 A g−1. The Zn//MnCo2O4 battery achieves energy density values in the range of 714 to 207 Wh kg−1 with power density values in the range of 60 to 1200 W kg−1. The good cycle stability of 85 % retention capacity after 250 cycles at 0.2 A g−1 is reported. Additionally, the structural development during cycling at the atomic level is examined by ex-situ measurement, indicating that the activation process of MnCo2O4 was primarily developed through the development of Mn2+/Mn3+ and Co2+/Co3+ electron states, inducing the electro-capacity properties of ZIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI