Synaptic transistor with multiple biological functions based on metal-organic frameworks combined with the LIF model of a spiking neural network to recognize temporal information

计算机科学 突触后电位 长时程增强 突触重量 尖峰神经网络 神经科学 突触可塑性 人工神经网络 人工智能 化学 生物化学 受体 生物
作者
Qinan Wang,Chun Zhao,Yi Sun,Rongxuan Xu,Chenran Li,Chengbo Wang,Wen Liu,Jiangmin Gu,Ying‐Li Shi,Li Yang,Xin Tu,Hao Gao,Zhen Wen
出处
期刊:Microsystems & Nanoengineering [Springer Nature]
卷期号:9 (1) 被引量:14
标识
DOI:10.1038/s41378-023-00566-4
摘要

Spiking neural networks (SNNs) have immense potential due to their utilization of synaptic plasticity and ability to take advantage of temporal correlation and low power consumption. The leaky integration and firing (LIF) model and spike-timing-dependent plasticity (STDP) are the fundamental components of SNNs. Here, a neural device is first demonstrated by zeolitic imidazolate frameworks (ZIFs) as an essential part of the synaptic transistor to simulate SNNs. Significantly, three kinds of typical functions between neurons, the memory function achieved through the hippocampus, synaptic weight regulation and membrane potential triggered by ion migration, are effectively described through short-term memory/long-term memory (STM/LTM), long-term depression/long-term potentiation (LTD/LTP) and LIF, respectively. Furthermore, the update rule of iteration weight in the backpropagation based on the time interval between presynaptic and postsynaptic pulses is extracted and fitted from the STDP. In addition, the postsynaptic currents of the channel directly connect to the very large scale integration (VLSI) implementation of the LIF mode that can convert high-frequency information into spare pulses based on the threshold of membrane potential. The leaky integrator block, firing/detector block and frequency adaptation block instantaneously release the accumulated voltage to form pulses. Finally, we recode the steady-state visual evoked potentials (SSVEPs) belonging to the electroencephalogram (EEG) with filter characteristics of LIF. SNNs deeply fused by synaptic transistors are designed to recognize the 40 different frequencies of EEG and improve accuracy to 95.1%. This work represents an advanced contribution to brain-like chips and promotes the systematization and diversification of artificial intelligence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研混子发布了新的文献求助10
刚刚
咿咿呀呀发布了新的文献求助10
刚刚
酷酷碧发布了新的文献求助10
2秒前
飘逸宛丝完成签到,获得积分10
3秒前
qzaima发布了新的文献求助10
3秒前
米酒完成签到,获得积分10
5秒前
step_stone给step_stone的求助进行了留言
5秒前
乐乐应助ayin采纳,获得10
6秒前
无花果应助hhh采纳,获得10
8秒前
叁壹粑粑完成签到,获得积分10
9秒前
酷酷碧完成签到,获得积分10
9秒前
10秒前
磕盐民工完成签到,获得积分10
11秒前
11秒前
忘羡222发布了新的文献求助20
11秒前
我是老大应助TT采纳,获得10
13秒前
13秒前
13秒前
雪鸽鸽完成签到,获得积分10
14秒前
完美世界应助开心青旋采纳,获得10
14秒前
LD完成签到 ,获得积分10
16秒前
xjy完成签到 ,获得积分10
16秒前
qzaima完成签到,获得积分10
16秒前
17秒前
xueshufengbujue完成签到,获得积分10
17秒前
楼寒天发布了新的文献求助10
17秒前
18秒前
科研通AI5应助111111111采纳,获得10
19秒前
19秒前
sunsunsun完成签到,获得积分10
19秒前
哎嘤斯坦完成签到,获得积分10
21秒前
21秒前
sweetbearm应助潦草采纳,获得10
22秒前
sunsunsun发布了新的文献求助10
22秒前
酷波er应助Mars采纳,获得10
23秒前
迪士尼在逃后母完成签到,获得积分10
23秒前
23秒前
我是老大应助su采纳,获得10
24秒前
hhh发布了新的文献求助10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824