Synaptic transistor with multiple biological functions based on metal-organic frameworks combined with the LIF model of a spiking neural network to recognize temporal information

计算机科学 突触后电位 长时程增强 突触重量 尖峰神经网络 神经科学 突触可塑性 人工神经网络 人工智能 化学 生物化学 受体 生物
作者
Qinan Wang,Chun Zhao,Yi Sun,Rongxuan Xu,Chenran Li,Chengbo Wang,Wen Liu,Jiangmin Gu,Ying‐Li Shi,Li Yang,Xin Tu,Hao Gao,Zhen Wen
出处
期刊:Microsystems & Nanoengineering [Springer Nature]
卷期号:9 (1) 被引量:14
标识
DOI:10.1038/s41378-023-00566-4
摘要

Spiking neural networks (SNNs) have immense potential due to their utilization of synaptic plasticity and ability to take advantage of temporal correlation and low power consumption. The leaky integration and firing (LIF) model and spike-timing-dependent plasticity (STDP) are the fundamental components of SNNs. Here, a neural device is first demonstrated by zeolitic imidazolate frameworks (ZIFs) as an essential part of the synaptic transistor to simulate SNNs. Significantly, three kinds of typical functions between neurons, the memory function achieved through the hippocampus, synaptic weight regulation and membrane potential triggered by ion migration, are effectively described through short-term memory/long-term memory (STM/LTM), long-term depression/long-term potentiation (LTD/LTP) and LIF, respectively. Furthermore, the update rule of iteration weight in the backpropagation based on the time interval between presynaptic and postsynaptic pulses is extracted and fitted from the STDP. In addition, the postsynaptic currents of the channel directly connect to the very large scale integration (VLSI) implementation of the LIF mode that can convert high-frequency information into spare pulses based on the threshold of membrane potential. The leaky integrator block, firing/detector block and frequency adaptation block instantaneously release the accumulated voltage to form pulses. Finally, we recode the steady-state visual evoked potentials (SSVEPs) belonging to the electroencephalogram (EEG) with filter characteristics of LIF. SNNs deeply fused by synaptic transistors are designed to recognize the 40 different frequencies of EEG and improve accuracy to 95.1%. This work represents an advanced contribution to brain-like chips and promotes the systematization and diversification of artificial intelligence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
瓜兮兮CYY发布了新的文献求助10
刚刚
小小宝发布了新的文献求助10
刚刚
lixiang发布了新的文献求助10
1秒前
1秒前
王红发布了新的文献求助10
2秒前
曾曾发布了新的文献求助20
2秒前
kiwi发布了新的文献求助200
2秒前
小岚花完成签到 ,获得积分10
2秒前
在水一方应助失眠的凝竹采纳,获得10
3秒前
科研通AI5应助lfzw采纳,获得10
4秒前
Hello应助酷酷白凡采纳,获得10
4秒前
5秒前
5秒前
r93527005完成签到,获得积分10
5秒前
研友_VZG7GZ应助正直千兰采纳,获得10
6秒前
Hello应助正直千兰采纳,获得10
6秒前
共享精神应助正直千兰采纳,获得10
6秒前
shrimp5215完成签到,获得积分10
6秒前
仰望星空应助喜悦的母鸡采纳,获得20
6秒前
天玄一刀发布了新的文献求助10
6秒前
彭于晏应助满眼星辰采纳,获得10
8秒前
子春完成签到 ,获得积分10
8秒前
小鱼儿发布了新的文献求助10
8秒前
无敌葡萄爱学习完成签到 ,获得积分10
10秒前
劳永杰发布了新的文献求助10
11秒前
HHHAN发布了新的文献求助10
11秒前
11秒前
11秒前
帅帅哈完成签到,获得积分10
12秒前
Lee发布了新的文献求助10
12秒前
Jerry20184完成签到 ,获得积分10
12秒前
12秒前
科研通AI5应助青阳采纳,获得10
14秒前
快乐的发布了新的文献求助10
16秒前
复杂发布了新的文献求助10
16秒前
pp发布了新的文献求助10
16秒前
饱满雅寒发布了新的文献求助10
17秒前
汉堡包应助不学无术采纳,获得10
17秒前
马飞关注了科研通微信公众号
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966468
求助须知:如何正确求助?哪些是违规求助? 3511965
关于积分的说明 11161125
捐赠科研通 3246769
什么是DOI,文献DOI怎么找? 1793483
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804403