Synaptic transistor with multiple biological functions based on metal-organic frameworks combined with the LIF model of a spiking neural network to recognize temporal information

计算机科学 突触后电位 长时程增强 突触重量 尖峰神经网络 神经科学 突触可塑性 人工神经网络 人工智能 化学 生物化学 受体 生物
作者
Qinan Wang,Chun Zhao,Yi Sun,Rongxuan Xu,Chenran Li,Chengbo Wang,Wen Liu,Jiangmin Gu,Ying‐Li Shi,Li Yang,Xin Tu,Hao Gao,Zhen Wen
出处
期刊:Microsystems & Nanoengineering [Springer Nature]
卷期号:9 (1) 被引量:14
标识
DOI:10.1038/s41378-023-00566-4
摘要

Spiking neural networks (SNNs) have immense potential due to their utilization of synaptic plasticity and ability to take advantage of temporal correlation and low power consumption. The leaky integration and firing (LIF) model and spike-timing-dependent plasticity (STDP) are the fundamental components of SNNs. Here, a neural device is first demonstrated by zeolitic imidazolate frameworks (ZIFs) as an essential part of the synaptic transistor to simulate SNNs. Significantly, three kinds of typical functions between neurons, the memory function achieved through the hippocampus, synaptic weight regulation and membrane potential triggered by ion migration, are effectively described through short-term memory/long-term memory (STM/LTM), long-term depression/long-term potentiation (LTD/LTP) and LIF, respectively. Furthermore, the update rule of iteration weight in the backpropagation based on the time interval between presynaptic and postsynaptic pulses is extracted and fitted from the STDP. In addition, the postsynaptic currents of the channel directly connect to the very large scale integration (VLSI) implementation of the LIF mode that can convert high-frequency information into spare pulses based on the threshold of membrane potential. The leaky integrator block, firing/detector block and frequency adaptation block instantaneously release the accumulated voltage to form pulses. Finally, we recode the steady-state visual evoked potentials (SSVEPs) belonging to the electroencephalogram (EEG) with filter characteristics of LIF. SNNs deeply fused by synaptic transistors are designed to recognize the 40 different frequencies of EEG and improve accuracy to 95.1%. This work represents an advanced contribution to brain-like chips and promotes the systematization and diversification of artificial intelligence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悦耳的万言完成签到,获得积分10
1秒前
Ls完成签到 ,获得积分10
2秒前
3秒前
4秒前
5秒前
陶醉觅夏发布了新的文献求助150
8秒前
共享精神应助Joker采纳,获得10
8秒前
欣欣完成签到,获得积分10
9秒前
10秒前
稚气满满完成签到 ,获得积分10
12秒前
xqw发布了新的文献求助10
12秒前
无花果应助无语的访云采纳,获得10
14秒前
飘逸的渊思完成签到,获得积分10
17秒前
Abby完成签到,获得积分10
18秒前
qqq完成签到 ,获得积分10
21秒前
田様应助Edward采纳,获得30
22秒前
24秒前
24秒前
黑化小狗完成签到,获得积分10
25秒前
SW完成签到,获得积分10
26秒前
春日二三发布了新的文献求助10
28秒前
MHCL完成签到 ,获得积分10
31秒前
queer完成签到,获得积分10
32秒前
危机的慕卉完成签到 ,获得积分10
32秒前
旦旦完成签到 ,获得积分10
36秒前
38秒前
edtaa完成签到 ,获得积分10
39秒前
科研通AI2S应助Ye000采纳,获得10
40秒前
小田发布了新的文献求助20
42秒前
sssshhhaa发布了新的文献求助10
42秒前
zzzzzz发布了新的文献求助20
42秒前
44秒前
45秒前
46秒前
FashionBoy应助黑化小狗采纳,获得10
47秒前
47秒前
大个应助Django采纳,获得10
47秒前
桐桐应助xuexinru采纳,获得10
47秒前
48秒前
48秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180810
求助须知:如何正确求助?哪些是违规求助? 2831007
关于积分的说明 7982557
捐赠科研通 2492866
什么是DOI,文献DOI怎么找? 1329898
科研通“疑难数据库(出版商)”最低求助积分说明 635814
版权声明 602954